M3Site / esm /pretrained.py
anonymousforpaper's picture
Upload 103 files
224a33f verified
from typing import Callable
import torch
import torch.nn as nn
from esm.models.esm3 import ESM3
from esm.models.function_decoder import FunctionTokenDecoder
from esm.models.vqvae import (
StructureTokenDecoder,
StructureTokenEncoder,
)
from esm.utils.constants.esm3 import data_root
from esm.utils.constants.models import (
ESM3_FUNCTION_DECODER_V0,
ESM3_OPEN_SMALL,
ESM3_STRUCTURE_DECODER_V0,
ESM3_STRUCTURE_ENCODER_V0,
)
ModelBuilder = Callable[[torch.device | str], nn.Module]
def ESM3_sm_open_v0(device: torch.device | str = "cpu"):
model = (
ESM3(
d_model=1536,
n_heads=24,
v_heads=256,
n_layers=48,
structure_encoder_name=ESM3_STRUCTURE_ENCODER_V0,
structure_decoder_name=ESM3_STRUCTURE_DECODER_V0,
function_decoder_name=ESM3_FUNCTION_DECODER_V0,
)
.to(device)
.eval()
)
state_dict = torch.load(
data_root() / "data/weights/esm3_sm_open_v1.pth", map_location=device
)
model.load_state_dict(state_dict)
return model
def ESM3_structure_encoder_v0(device: torch.device | str = "cpu"):
model = (
StructureTokenEncoder(
d_model=1024, n_heads=1, v_heads=128, n_layers=2, d_out=128, n_codes=4096
)
.to(device)
.eval()
)
state_dict = torch.load(
data_root() / "data/weights/esm3_structure_encoder_v0.pth", map_location=device
)
model.load_state_dict(state_dict)
return model
def ESM3_structure_decoder_v0(device: torch.device | str = "cpu"):
model = (
StructureTokenDecoder(d_model=1280, n_heads=20, n_layers=30).to(device).eval()
)
state_dict = torch.load(
data_root() / "data/weights/esm3_structure_decoder_v0.pth", map_location=device
)
model.load_state_dict(state_dict)
return model
def ESM3_function_decoder_v0(device: torch.device | str = "cpu"):
model = FunctionTokenDecoder().to(device).eval()
state_dict = torch.load(
data_root() / "data/weights/esm3_function_decoder_v0.pth", map_location=device
)
model.load_state_dict(state_dict)
return model
LOCAL_MODEL_REGISTRY: dict[str, ModelBuilder] = {
ESM3_OPEN_SMALL: ESM3_sm_open_v0,
ESM3_STRUCTURE_ENCODER_V0: ESM3_structure_encoder_v0,
ESM3_STRUCTURE_DECODER_V0: ESM3_structure_decoder_v0,
ESM3_FUNCTION_DECODER_V0: ESM3_function_decoder_v0,
}
def load_local_model(model_name: str, device: torch.device | str = "cpu") -> nn.Module:
if model_name not in LOCAL_MODEL_REGISTRY:
raise ValueError(f"Model {model_name} not found in local model registry.")
return LOCAL_MODEL_REGISTRY[model_name](device)
# Register custom versions of ESM3 for use with the local inference API
def register_local_model(model_name: str, model_builder: ModelBuilder) -> None:
LOCAL_MODEL_REGISTRY[model_name] = model_builder