M3Site / esm /utils /misc.py
anonymousforpaper's picture
Upload 103 files
224a33f verified
import math
from typing import ContextManager, Sequence, TypeVar
import numpy as np
import torch
MAX_SUPPORTED_DISTANCE = 1e6
TSequence = TypeVar("TSequence", bound=Sequence)
def slice_python_object_as_numpy(
obj: TSequence, idx: int | list[int] | slice | np.ndarray
) -> TSequence:
"""
Slice a python object (like a list, string, or tuple) as if it was a numpy object.
Example:
>>> obj = "ABCDE"
>>> slice_python_object_as_numpy(obj, [1, 3, 4])
"BDE"
>>> obj = [1, 2, 3, 4, 5]
>>> slice_python_object_as_numpy(obj, np.arange(5) < 3)
[1, 2, 3]
"""
if isinstance(idx, int):
idx = [idx]
if isinstance(idx, np.ndarray) and idx.dtype == bool:
sliced_obj = [obj[i] for i in np.where(idx)[0]]
elif isinstance(idx, slice):
sliced_obj = obj[idx]
else:
sliced_obj = [obj[i] for i in idx]
match obj, sliced_obj:
case str(), list():
sliced_obj = "".join(sliced_obj)
case _:
sliced_obj = obj.__class__(sliced_obj) # type: ignore
return sliced_obj # type: ignore
def rbf(values, v_min, v_max, n_bins=16):
"""
Returns RBF encodings in a new dimension at the end.
"""
rbf_centers = torch.linspace(
v_min, v_max, n_bins, device=values.device, dtype=values.dtype
)
rbf_centers = rbf_centers.view([1] * len(values.shape) + [-1])
rbf_std = (v_max - v_min) / n_bins
z = (values.unsqueeze(-1) - rbf_centers) / rbf_std
return torch.exp(-(z**2))
def batched_gather(data, inds, dim=0, no_batch_dims=0):
ranges = []
for i, s in enumerate(data.shape[:no_batch_dims]):
r = torch.arange(s)
r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
ranges.append(r)
remaining_dims = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
ranges.extend(remaining_dims)
return data[ranges]
def node_gather(s: torch.Tensor, edges: torch.Tensor) -> torch.Tensor:
return batched_gather(s.unsqueeze(-3), edges, -2, no_batch_dims=len(s.shape) - 1)
def knn_graph(
coords: torch.Tensor,
coord_mask: torch.Tensor,
padding_mask: torch.Tensor,
sequence_id: torch.Tensor,
*,
no_knn: int,
):
L = coords.shape[-2]
num_by_dist = min(no_knn, L)
device = coords.device
coords = coords.nan_to_num()
coord_mask = ~(coord_mask[..., None, :] & coord_mask[..., :, None])
padding_pairwise_mask = padding_mask[..., None, :] | padding_mask[..., :, None]
if sequence_id is not None:
padding_pairwise_mask |= torch.unsqueeze(sequence_id, 1) != torch.unsqueeze(
sequence_id, 2
)
dists = (coords.unsqueeze(-2) - coords.unsqueeze(-3)).norm(dim=-1)
arange = torch.arange(L, device=device)
seq_dists = (arange.unsqueeze(-1) - arange.unsqueeze(-2)).abs()
# We only support up to a certain distance, above that, we use sequence distance
# instead. This is so that when a large portion of the structure is masked out,
# the edges are built according to sequence distance.
max_dist = MAX_SUPPORTED_DISTANCE
torch._assert_async((dists[~coord_mask] < max_dist).all())
struct_then_seq_dist = (
seq_dists.to(dists.dtype)
.mul(1e2)
.add(max_dist)
.where(coord_mask, dists)
.masked_fill(padding_pairwise_mask, torch.inf)
)
dists, edges = struct_then_seq_dist.sort(dim=-1, descending=False)
# This is a L x L tensor, where we index by rows first,
# and columns are the edges we should pick.
chosen_edges = edges[..., :num_by_dist]
chosen_mask = dists[..., :num_by_dist].isfinite()
return chosen_edges, chosen_mask
def stack_variable_length_tensors(
sequences: Sequence[torch.Tensor],
constant_value: int | float = 0,
dtype: torch.dtype | None = None,
) -> torch.Tensor:
"""Automatically stack tensors together, padding variable lengths with the
value in constant_value. Handles an arbitrary number of dimensions.
Examples:
>>> tensor1, tensor2 = torch.ones([2]), torch.ones([5])
>>> stack_variable_length_tensors(tensor1, tensor2)
tensor of shape [2, 5]. First row is [1, 1, 0, 0, 0]. Second row is all ones.
>>> tensor1, tensor2 = torch.ones([2, 4]), torch.ones([5, 3])
>>> stack_variable_length_tensors(tensor1, tensor2)
tensor of shape [2, 5, 4]
"""
batch_size = len(sequences)
shape = [batch_size] + np.max([seq.shape for seq in sequences], 0).tolist()
if dtype is None:
dtype = sequences[0].dtype
device = sequences[0].device
array = torch.full(shape, constant_value, dtype=dtype, device=device)
for arr, seq in zip(array, sequences):
arrslice = tuple(slice(dim) for dim in seq.shape)
arr[arrslice] = seq
return array
def unbinpack(
tensor: torch.Tensor, sequence_id: torch.Tensor | None, pad_value: int | float
):
"""
Args:
tensor (Tensor): [B, L, ...]
Returns:
Tensor: [B_unbinpacked, L_unbinpack, ...]
"""
if sequence_id is None:
return tensor
unpacked_tensors = []
num_sequences = sequence_id.max(dim=-1).values + 1
for batch_idx, (batch_seqid, batch_num_sequences) in enumerate(
zip(sequence_id, num_sequences)
):
for seqid in range(batch_num_sequences):
mask = batch_seqid == seqid
unpacked = tensor[batch_idx, mask]
unpacked_tensors.append(unpacked)
return stack_variable_length_tensors(unpacked_tensors, pad_value)
def fp32_autocast_context(device_type: str) -> ContextManager[torch.amp.autocast]:
"""
Returns an autocast context manager that disables downcasting by AMP.
Args:
device_type: The device type ('cpu' or 'cuda')
Returns:
An autocast context manager with the specified behavior.
"""
if device_type == "cpu":
return torch.amp.autocast(device_type, enabled=False)
elif device_type == "cuda":
return torch.amp.autocast(device_type, dtype=torch.float32)
else:
raise ValueError(f"Unsupported device type: {device_type}")
def merge_ranges(ranges: list[range], merge_gap_max: int | None = None) -> list[range]:
"""Merge overlapping ranges into sorted, non-overlapping segments.
Args:
ranges: collection of ranges to merge.
merge_gap_max: optionally merge neighboring ranges that are separated by a gap
no larger than this size.
Returns:
non-overlapping ranges merged from the inputs, sorted by position.
"""
ranges = sorted(ranges, key=lambda r: r.start)
merge_gap_max = merge_gap_max if merge_gap_max is not None else 0
assert merge_gap_max >= 0, f"Invalid merge_gap_max: {merge_gap_max}"
merged = []
for r in ranges:
if not merged:
merged.append(r)
else:
last = merged[-1]
if last.stop + merge_gap_max >= r.start:
merged[-1] = range(last.start, max(last.stop, r.stop))
else:
merged.append(r)
return merged
def list_nan_to_none(l: list) -> list:
if l is None:
return None # type: ignore
elif isinstance(l, float):
return None if math.isnan(l) else l # type: ignore
elif isinstance(l, list):
return [list_nan_to_none(x) for x in l]
else:
# Don't go into other structures.
return l
def list_none_to_nan(l: list) -> list:
if l is None:
return math.nan # type: ignore
elif isinstance(l, list):
return [list_none_to_nan(x) for x in l]
else:
return l
def maybe_tensor(x, convert_none_to_nan: bool = False) -> torch.Tensor | None:
if x is None:
return None
if convert_none_to_nan:
x = list_none_to_nan(x)
return torch.tensor(x)
def maybe_list(x, convert_nan_to_none: bool = False) -> list | None:
if x is None:
return None
x = x.tolist()
if convert_nan_to_none:
x = list_nan_to_none(x)
return x