Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from esm.utils.structure.affine3d import Affine3D | |
def masked_mean( | |
mask: torch.Tensor, | |
value: torch.Tensor, | |
dim: int | None | tuple[int, ...] = None, | |
eps=1e-10, | |
) -> torch.Tensor: | |
"""Compute the mean of `value` where only positions where `mask == true` are | |
counted. | |
""" | |
mask = mask.expand(*value.shape) | |
return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim)) | |
def _pae_bins( | |
max_bin: float = 31, num_bins: int = 64, device: torch.device = torch.device("cpu") | |
): | |
bins = torch.linspace(0, max_bin, steps=(num_bins - 1), device=device) | |
step = max_bin / (num_bins - 2) | |
bin_centers = bins + step / 2 | |
bin_centers = torch.cat( | |
[bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0 | |
) | |
return bin_centers | |
def _compute_pae_masks(mask: torch.Tensor): | |
square_mask = (mask.unsqueeze(-1) * mask.unsqueeze(-2)).bool() | |
return square_mask | |
def compute_predicted_aligned_error( | |
logits: torch.Tensor, | |
aa_mask: torch.Tensor, | |
sequence_id: torch.Tensor | None = None, | |
max_bin: float = 31, | |
) -> torch.Tensor: | |
bins = _pae_bins(max_bin, logits.shape[-1], logits.device) | |
square_mask = _compute_pae_masks(aa_mask) | |
min_v = torch.finfo(logits.dtype).min | |
probs = logits.masked_fill(~square_mask.unsqueeze(-1), min_v).softmax(dim=-1) | |
return (probs * bins).sum(dim=-1) | |
def compute_tm( | |
logits: torch.Tensor, | |
aa_mask: torch.Tensor, | |
max_bin: float = 31.0, | |
): | |
square_mask = _compute_pae_masks(aa_mask) | |
seqlens = aa_mask.sum(-1, keepdim=True) | |
bins = _pae_bins(max_bin, logits.shape[-1], logits.device) | |
d0 = 1.24 * (seqlens.clamp_min(19) - 15) ** (1 / 3) - 1.8 | |
f_d = 1.0 / (1 + (bins / d0.unsqueeze(-1)) ** 2) | |
min_v = torch.finfo(logits.dtype).min | |
probs = logits.masked_fill(~square_mask.unsqueeze(-1), min_v).softmax(dim=-1) | |
# This is the sum over bins | |
ptm = (probs * f_d.unsqueeze(-2)).sum(dim=-1) | |
# This is the mean over residues j | |
ptm = masked_mean(square_mask, ptm, dim=-1) | |
# The we do a max over residues i | |
return ptm.max(dim=-1).values | |
def tm_loss( | |
logits: torch.Tensor, | |
pred_affine: torch.Tensor, | |
targ_affine: torch.Tensor, | |
targ_mask: torch.Tensor, | |
tm_mask: torch.Tensor | None = None, | |
sequence_id: torch.Tensor | None = None, | |
max_bin: float = 31, | |
): | |
pred = Affine3D.from_tensor(pred_affine) | |
targ = Affine3D.from_tensor(targ_affine) | |
def transform(affine: Affine3D): | |
pts = affine.trans[..., None, :, :] | |
return affine.invert()[..., None].apply(pts) | |
with torch.no_grad(): | |
sq_diff = (transform(pred) - transform(targ)).square().sum(dim=-1) | |
num_bins = logits.shape[-1] | |
sq_bins = torch.linspace( | |
0, max_bin, num_bins - 1, device=logits.device | |
).square() | |
# Gets the bin id by using a sum. | |
true_bins = (sq_diff[..., None] > sq_bins).sum(dim=-1).long() | |
errors = F.cross_entropy(logits.movedim(3, 1), true_bins, reduction="none") | |
square_mask = _compute_pae_masks(targ_mask) | |
loss = masked_mean(square_mask, errors, dim=(-1, -2)) | |
if tm_mask is not None: | |
loss = masked_mean(tm_mask, loss, dim=None) | |
else: | |
loss = loss.mean() | |
return loss | |