|
|
|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
import plotly.express as px |
|
from datetime import datetime, timedelta |
|
import random |
|
import json |
|
import os |
|
import time |
|
import requests |
|
from typing import List, Dict, Any, Optional |
|
import logging |
|
from dotenv import load_dotenv |
|
import uuid |
|
import re |
|
|
|
|
|
import google.generativeai as genai |
|
from google.api_core import exceptions as google_exceptions |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") |
|
SERPER_API_KEY = os.getenv("SERPER_API_KEY") |
|
|
|
if not GOOGLE_API_KEY: |
|
logger.warning("GOOGLE_API_KEY not found. AI features will not work.") |
|
if not SERPER_API_KEY: |
|
logger.warning("SERPER_API_KEY not found. Live web search features will not work.") |
|
|
|
|
|
try: |
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
logger.info("Google AI client configured successfully.") |
|
except Exception as e: |
|
logger.error(f"Failed to configure Google AI client: {e}") |
|
genai = None |
|
|
|
|
|
|
|
MODEL_ID = "gemini-1.5-flash-latest" |
|
if genai: |
|
try: |
|
gemini_model = genai.GenerativeModel( |
|
MODEL_ID, |
|
|
|
|
|
safety_settings=[ |
|
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, |
|
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, |
|
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_ONLY_HIGH"}, |
|
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, |
|
] |
|
) |
|
logger.info(f"Google AI Model '{MODEL_ID}' initialized.") |
|
except Exception as e: |
|
logger.error(f"Failed to initialize Google AI Model '{MODEL_ID}': {e}") |
|
gemini_model = None |
|
else: |
|
gemini_model = None |
|
|
|
|
|
|
|
EMOTIONS = ["Unmotivated π©", "Anxious π₯", "Confused π€", "Excited π", "Overwhelmed π€―", "Discouraged π", "Hopeful β¨", "Focused π", "Stuck π§±"] |
|
GOAL_TYPES = [ |
|
"Get a job (Big Company) π’", "Get a job (Startup) π±", "Find an Internship π", "Freelance/Contract Work πΌ", |
|
"Change Careers π", "Improve Specific Skills π‘", "Build Professional Network π€", "Leadership Development π", "Explore Options π€" |
|
] |
|
USER_DB_PATH = "user_database_v3.json" |
|
RESUME_FOLDER = "user_resumes_v3" |
|
PORTFOLIO_FOLDER = "user_portfolios_v3" |
|
os.makedirs(RESUME_FOLDER, exist_ok=True) |
|
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
generate_document_template_func = genai.protos.FunctionDeclaration( |
|
name="generate_document_template", |
|
description="Generate a document template (like a resume or cover letter) based on type, career field, and experience level.", |
|
parameters=genai.protos.Schema( |
|
type=genai.protos.Type.OBJECT, |
|
properties={ |
|
"document_type": genai.protos.Schema(type=genai.protos.Type.STRING, description="e.g., Resume, Cover Letter, LinkedIn Summary"), |
|
"career_field": genai.protos.Schema(type=genai.protos.Type.STRING, description="Target industry or field"), |
|
"experience_level": genai.protos.Schema(type=genai.protos.Type.STRING, description="e.g., Entry, Mid, Senior, Student") |
|
}, |
|
required=["document_type"] |
|
) |
|
) |
|
|
|
|
|
create_personalized_routine_func = genai.protos.FunctionDeclaration( |
|
name="create_personalized_routine", |
|
description="Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.", |
|
parameters=genai.protos.Schema( |
|
type=genai.protos.Type.OBJECT, |
|
properties={ |
|
"emotion": genai.protos.Schema(type=genai.protos.Type.STRING, description="User's current primary emotion"), |
|
"goal": genai.protos.Schema(type=genai.protos.Type.STRING, description="User's primary career goal"), |
|
"available_time_minutes": genai.protos.Schema(type=genai.protos.Type.INTEGER, description="Average minutes per day user can dedicate"), |
|
"routine_length_days": genai.protos.Schema(type=genai.protos.Type.INTEGER, description="Desired length of the routine in days (e.g., 7 for weekly)") |
|
}, |
|
required=["emotion", "goal"] |
|
) |
|
) |
|
|
|
|
|
analyze_resume_func = genai.protos.FunctionDeclaration( |
|
name="analyze_resume", |
|
description="Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal. Provides strengths, weaknesses, and suggestions.", |
|
parameters=genai.protos.Schema( |
|
type=genai.protos.Type.OBJECT, |
|
properties={ |
|
"resume_text": genai.protos.Schema(type=genai.protos.Type.STRING, description="The full text content of the user's resume"), |
|
"career_goal": genai.protos.Schema(type=genai.protos.Type.STRING, description="The specific career goal to analyze against") |
|
}, |
|
required=["resume_text", "career_goal"] |
|
) |
|
) |
|
|
|
|
|
analyze_portfolio_func = genai.protos.FunctionDeclaration( |
|
name="analyze_portfolio", |
|
description="Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.", |
|
parameters=genai.protos.Schema( |
|
type=genai.protos.Type.OBJECT, |
|
properties={ |
|
"portfolio_url": genai.protos.Schema(type=genai.protos.Type.STRING, description="URL link to the online portfolio (optional)"), |
|
"portfolio_description": genai.protos.Schema(type=genai.protos.Type.STRING, description="User's description of the portfolio content and purpose"), |
|
"career_goal": genai.protos.Schema(type=genai.protos.Type.STRING, description="The specific career goal to analyze against") |
|
}, |
|
required=["portfolio_description", "career_goal"] |
|
) |
|
) |
|
|
|
|
|
extract_and_rate_skills_from_resume_func = genai.protos.FunctionDeclaration( |
|
name="extract_and_rate_skills_from_resume", |
|
description="Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume. Useful for identifying strengths and gaps.", |
|
parameters=genai.protos.Schema( |
|
type=genai.protos.Type.OBJECT, |
|
properties={ |
|
"resume_text": genai.protos.Schema(type=genai.protos.Type.STRING, description="The full text content of the user's resume"), |
|
"max_skills": genai.protos.Schema(type=genai.protos.Type.INTEGER, description="Maximum number of skills to extract (default 8)") |
|
}, |
|
required=["resume_text"] |
|
) |
|
) |
|
|
|
|
|
search_web_serper_func = genai.protos.FunctionDeclaration( |
|
name="search_jobs_courses_skills", |
|
description="Search the web for relevant job openings, online courses, or skills development resources based on the user's goals, location, and potentially identified skill gaps.", |
|
parameters=genai.protos.Schema( |
|
type=genai.protos.Type.OBJECT, |
|
properties={ |
|
"search_query": genai.protos.Schema(type=genai.protos.Type.STRING, description="The specific search query (e.g., 'remote data analyst jobs in California', 'online Python courses for beginners', 'project management certifications')"), |
|
"search_type": genai.protos.Schema(type=genai.protos.Type.STRING, description="Type of search: 'jobs', 'courses', 'skills', or 'general'"), |
|
"location": genai.protos.Schema(type=genai.protos.Type.STRING, description="Geographical location for the search (if applicable, e.g., 'London, UK')") |
|
}, |
|
required=["search_query", "search_type"] |
|
) |
|
) |
|
|
|
|
|
|
|
tools_list_gemini = [ |
|
generate_document_template_func, |
|
create_personalized_routine_func, |
|
analyze_resume_func, |
|
analyze_portfolio_func, |
|
extract_and_rate_skills_from_resume_func, |
|
search_web_serper_func |
|
] |
|
|
|
|
|
def load_user_database(): |
|
try: |
|
with open(USER_DB_PATH, 'r', encoding='utf-8') as file: db = json.load(file) |
|
|
|
for user_id in db.get('users', {}): |
|
profile = db['users'][user_id] |
|
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list): profile['chat_history'] = [] |
|
else: |
|
|
|
fixed_history = [] |
|
for msg in profile['chat_history']: |
|
if isinstance(msg, dict) and 'role' in msg and 'parts' in msg: |
|
|
|
if msg['role'] in ['user', 'model'] and isinstance(msg['parts'], list): |
|
fixed_history.append(msg) |
|
elif isinstance(msg, dict) and 'role' == 'function': |
|
|
|
if 'name' in msg and 'response' in msg: |
|
fixed_history.append(msg) |
|
profile['chat_history'] = fixed_history |
|
|
|
|
|
for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']: |
|
if key not in profile or not isinstance(profile.get(key), list): |
|
profile[key] = [] |
|
|
|
for key in ['name', 'location', 'current_emotion', 'career_goal', 'industry', 'preferred_work_style', 'long_term_aspirations', 'resume_path', 'portfolio_path']: |
|
if key not in profile: |
|
profile[key] = "" |
|
if 'progress_points' not in profile: profile['progress_points'] = 0 |
|
if 'experience_level' not in profile: profile['experience_level'] = "Not specified" |
|
|
|
return db |
|
except (FileNotFoundError, json.JSONDecodeError): logger.info(f"DB file '{USER_DB_PATH}' not found/invalid. Creating new."); db = {'users': {}}; save_user_database(db); return db |
|
except Exception as e: logger.error(f"Error loading DB from {USER_DB_PATH}: {e}"); return {'users': {}} |
|
|
|
def save_user_database(db): |
|
try: |
|
with open(USER_DB_PATH, 'w', encoding='utf-8') as file: json.dump(db, file, indent=4, ensure_ascii=False) |
|
except Exception as e: logger.error(f"Error saving DB to {USER_DB_PATH}: {e}") |
|
|
|
def get_user_profile(user_id): |
|
db = load_user_database() |
|
if user_id not in db.get('users', {}): |
|
db['users'] = db.get('users', {}) |
|
|
|
db['users'][user_id] = { |
|
"user_id": user_id, |
|
"name": "", |
|
"location": "", |
|
"industry": "", |
|
"experience_level": "Not specified", |
|
"preferred_work_style": "Any", |
|
"values": [], |
|
"strengths": [], |
|
"areas_for_development": [], |
|
"long_term_aspirations": "", |
|
|
|
"current_emotion": "", |
|
"career_goal": "", |
|
"progress_points": 0, |
|
"completed_tasks": [], |
|
"upcoming_events": [], |
|
"routine_history": [], |
|
"daily_emotions": [], |
|
"resume_path": "", |
|
"portfolio_path": "", |
|
"recommendations": [], |
|
"chat_history": [], |
|
"joined_date": datetime.now().isoformat() |
|
} |
|
save_user_database(db) |
|
|
|
|
|
profile = db.get('users', {}).get(user_id, {}) |
|
|
|
if 'chat_history' not in profile or not isinstance(profile.get('chat_history'), list): |
|
profile['chat_history'] = [] |
|
|
|
for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']: |
|
if key not in profile: profile[key] = [] |
|
|
|
|
|
return profile |
|
|
|
|
|
def update_user_profile(user_id, updates): |
|
|
|
db = load_user_database() |
|
if user_id in db.get('users', {}): |
|
profile = db['users'][user_id] |
|
for key, value in updates.items(): |
|
|
|
profile[key] = value |
|
save_user_database(db) |
|
return profile |
|
else: |
|
logger.warning(f"Attempted update non-existent profile: {user_id}") |
|
return None |
|
|
|
def add_task_to_user(user_id, task): |
|
|
|
db = load_user_database(); profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'completed_tasks' not in profile or not isinstance(profile['completed_tasks'], list): profile['completed_tasks'] = [] |
|
task_with_date = { "task": task, "date": datetime.now().isoformat() } |
|
profile['completed_tasks'].append(task_with_date) |
|
profile['progress_points'] = profile.get('progress_points', 0) + random.randint(10, 25) |
|
save_user_database(db); return profile |
|
return None |
|
|
|
def add_emotion_record(user_id, emotion): |
|
|
|
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion |
|
db = load_user_database(); profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'daily_emotions' not in profile or not isinstance(profile['daily_emotions'], list): profile['daily_emotions'] = [] |
|
emotion_record = { "emotion": cleaned_emotion, "date": datetime.now().isoformat() } |
|
profile['daily_emotions'].append(emotion_record) |
|
profile['current_emotion'] = cleaned_emotion |
|
save_user_database(db); return profile |
|
return None |
|
|
|
def add_routine_to_user(user_id, routine): |
|
|
|
db = load_user_database(); profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'routine_history' not in profile or not isinstance(profile['routine_history'], list): profile['routine_history'] = [] |
|
try: days_delta = int(routine.get('days', 7)) |
|
except: days_delta = 7 |
|
end_date = (datetime.now() + timedelta(days=days_delta)).isoformat() |
|
routine_with_date = { "routine": routine, "start_date": datetime.now().isoformat(), "end_date": end_date, "completion": 0 } |
|
profile['routine_history'].insert(0, routine_with_date) |
|
profile['routine_history'] = profile['routine_history'][:10] |
|
save_user_database(db); return profile |
|
return None |
|
|
|
def save_user_resume(user_id, resume_text): |
|
|
|
if not resume_text: return None |
|
filename, filepath = f"{user_id}_resume.txt", os.path.join(RESUME_FOLDER, f"{user_id}_resume.txt") |
|
try: |
|
with open(filepath, 'w', encoding='utf-8') as file: file.write(resume_text) |
|
update_user_profile(user_id, {"resume_path": filepath}) |
|
logger.info(f"Resume saved: {filepath}"); return filepath |
|
except Exception as e: logger.error(f"Error saving resume {filepath}: {e}"); return None |
|
|
|
def save_user_portfolio(user_id, portfolio_url, portfolio_description): |
|
|
|
if not portfolio_description: return None |
|
filename, filepath = f"{user_id}_portfolio.json", os.path.join(PORTFOLIO_FOLDER, f"{user_id}_portfolio.json") |
|
portfolio_content = {"url": portfolio_url, "description": portfolio_description, "saved_date": datetime.now().isoformat()} |
|
try: |
|
with open(filepath, 'w', encoding='utf-8') as file: json.dump(portfolio_content, file, indent=4, ensure_ascii=False) |
|
update_user_profile(user_id, {"portfolio_path": filepath}) |
|
logger.info(f"Portfolio saved: {filepath}"); return filepath |
|
except Exception as e: logger.error(f"Error saving portfolio {filepath}: {e}"); return None |
|
|
|
def add_recommendation_to_user(user_id, recommendation): |
|
|
|
db = load_user_database(); profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): profile['recommendations'] = [] |
|
|
|
recommendation_with_date = {"recommendation": recommendation, "date": datetime.now().isoformat(), "status": "pending"} |
|
profile['recommendations'].insert(0, recommendation_with_date) |
|
profile['recommendations'] = profile['recommendations'][:20] |
|
save_user_database(db); return profile |
|
return None |
|
|
|
def add_chat_message(user_id, role, parts_or_func_response): |
|
"""Adds a message to the user's chat history using Gemini format.""" |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(user_id) |
|
if not profile: |
|
logger.warning(f"Profile not found for {user_id} when adding chat message.") |
|
return None |
|
|
|
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list): |
|
profile['chat_history'] = [] |
|
|
|
if role not in ['user', 'model', 'function']: |
|
logger.warning(f"Invalid role '{role}' for Gemini chat history.") |
|
return profile |
|
|
|
message = {"role": role} |
|
if role == 'user' or role == 'model': |
|
|
|
|
|
if isinstance(parts_or_func_response, str): |
|
message['parts'] = [{'text': parts_or_func_response}] |
|
elif isinstance(parts_or_func_response, list): |
|
|
|
if all(isinstance(p, dict) and 'text' in p for p in parts_or_func_response): |
|
message['parts'] = parts_or_func_response |
|
else: |
|
logger.warning(f"Invalid parts format for role {role}: {parts_or_func_response}") |
|
return profile |
|
else: |
|
logger.warning(f"Invalid content type for role {role}: {type(parts_or_func_response)}") |
|
return profile |
|
|
|
elif role == 'function': |
|
|
|
if isinstance(parts_or_func_response, dict) and 'name' in parts_or_func_response and 'response' in parts_or_func_response: |
|
message.update(parts_or_func_response) |
|
else: |
|
logger.warning(f"Invalid function response format: {parts_or_func_response}") |
|
return profile |
|
|
|
profile['chat_history'].append(message) |
|
|
|
|
|
max_history_turns = 25 |
|
if len(profile['chat_history']) > max_history_turns * 2: |
|
profile['chat_history'] = profile['chat_history'][-(max_history_turns * 2):] |
|
|
|
save_user_database(db) |
|
return profile |
|
|
|
|
|
|
|
def generate_basic_routine(emotion, goal, available_time=60, days=7): |
|
|
|
logger.info(f"Generating basic fallback routine for emotion={emotion}, goal={goal}") |
|
|
|
routine_types = { |
|
"job_search": [ {"name": "Research Target Companies", "points": 15, "duration": 20, "description": "Identify 3 potential employers aligned with your goal."}, {"name": "Update LinkedIn Section", "points": 15, "duration": 25, "description": "Refine one section of your LinkedIn profile (e.g., summary, experience)."}, {"name": "Practice STAR Method", "points": 20, "duration": 15, "description": "Outline one experience using the STAR method for interviews."}, {"name": "Find Networking Event", "points": 10, "duration": 10, "description": "Look for one relevant online or local networking event."} ], |
|
"skill_building": [ {"name": "Online Tutorial (1 Module)", "points": 25, "duration": 45, "description": "Complete one module of a relevant online course/tutorial."}, {"name": "Read Industry Blog/Article", "points": 10, "duration": 15, "description": "Read and summarize one article about trends in your field."}, {"name": "Small Project Task", "points": 30, "duration": 60, "description": "Dedicate time to a specific task within a personal project."}, {"name": "Review Skill Documentation", "points": 15, "duration": 30, "description": "Read documentation or examples for a skill you're learning."} ], |
|
"motivation_wellbeing": [ {"name": "Mindful Reflection", "points": 10, "duration": 10, "description": "Spend 10 minutes reflecting on progress and challenges without judgment."}, {"name": "Set 1-3 Daily Intentions", "points": 10, "duration": 5, "description": "Define small, achievable goals for the day."}, {"name": "Short Break/Walk", "points": 15, "duration": 15, "description": "Take a brief break away from screens, preferably with light movement."}, {"name": "Connect with Support", "points": 20, "duration": 20, "description": "Briefly chat with a friend, mentor, or peer about your journey."} ] } |
|
cleaned_emotion = emotion.split(" ")[0].lower() if " " in emotion else emotion.lower() |
|
negative_emotions = ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged", "stuck"] |
|
if any(term in goal.lower() for term in ["job", "internship", "company", "freelance", "contract"]): base_type = "job_search" |
|
elif any(term in goal.lower() for term in ["skill", "learn", "development"]): base_type = "skill_building" |
|
elif "network" in goal.lower(): base_type = "job_search" |
|
else: base_type = "skill_building" |
|
include_wellbeing = cleaned_emotion in negative_emotions or "overwhelmed" in cleaned_emotion |
|
daily_tasks_list = [] |
|
for day in range(1, days + 1): |
|
day_tasks, remaining_time, tasks_added_count = [], available_time, 0 |
|
possible_tasks = routine_types[base_type].copy() |
|
if include_wellbeing: possible_tasks.extend(routine_types["motivation_wellbeing"]) |
|
random.shuffle(possible_tasks) |
|
for task in possible_tasks: |
|
|
|
if task.get("duration", 0) > 0 and task["duration"] <= remaining_time and tasks_added_count < 3: |
|
day_tasks.append(task); remaining_time -= task["duration"]; tasks_added_count += 1 |
|
if remaining_time < 10 or tasks_added_count >= 3: break |
|
daily_tasks_list.append({"day": day, "tasks": day_tasks}) |
|
routine = {"name": f"{days}-Day Focus Plan", "description": f"A focused {days}-day plan to help you with '{goal}', especially while feeling {cleaned_emotion}. We'll do this step-by-step!", "days": days, "daily_tasks": daily_tasks_list} |
|
return routine |
|
|
|
|
|
|
|
|
|
|
|
def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> Dict[str, str]: |
|
"""Generates a basic markdown template for the specified document type.""" |
|
logger.info(f"Executing tool: generate_document_template(type='{document_type}', field='{career_field}', exp='{experience_level}')") |
|
template = f"## Basic Template: {document_type}\n\n" |
|
template += f"**Target Field:** {career_field or 'Not specified'}\n" |
|
template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n---\n\n" |
|
|
|
|
|
if "resume" in document_type.lower(): |
|
template += """ |
|
### Contact Information |
|
* Name: |
|
* Phone: |
|
* Email: |
|
* LinkedIn URL: |
|
* Portfolio URL (Optional): |
|
|
|
### Summary/Objective |
|
* _[ 2-3 sentences summarizing your key skills, experience, and career goals, tailored to the job/field. Make it impactful! ]_ |
|
|
|
### Experience |
|
**Company Name | Location | Job Title | Start Date β End Date** |
|
* Accomplishment 1 (Use action verbs: Led, Managed, Developed, Increased X by Y%. Quantify results!) |
|
* Accomplishment 2 |
|
* _[ Repeat for other relevant positions ]_ |
|
|
|
### Education |
|
**University/Institution Name | Degree | Graduation Date (or Expected)** |
|
* Relevant coursework, honors, activities (Optional) |
|
|
|
### Skills |
|
* **Technical Skills:** [ e.g., Python, Java, SQL, MS Excel, Google Analytics, Figma, AWS ] |
|
* **Languages:** [ e.g., English (Native), Spanish (Fluent) ] |
|
* **Other:** [ Certifications, relevant tools, methodologies like Agile/Scrum ] |
|
""" |
|
elif "cover letter" in document_type.lower(): |
|
template += """ |
|
[Your Name] |
|
[Your Address] |
|
[Your Phone] |
|
[Your Email] |
|
|
|
[Date] |
|
|
|
[Hiring Manager Name (if known), or 'Hiring Team'] |
|
[Hiring Manager Title (if known)] |
|
[Company Name] |
|
[Company Address] |
|
|
|
**Subject: Application for [Job Title] Position - [Your Name]** |
|
|
|
Dear [Mr./Ms./Mx. Last Name or Hiring Team], |
|
|
|
**Introduction:** State the position you're applying for and where you saw it. Express genuine enthusiasm for the role *and* the company. Briefly highlight 1-2 key qualifications that make you a perfect fit right from the start. |
|
* _[ Example: I am writing to express my strong interest in the [Job Title] position advertised on [Platform]. With my background in [Relevant Field] and proven ability to [Key Skill Relevant to Job], I am confident I can bring significant value to [Company Name]'s mission in [Specific Area Company Works In]. ]_ |
|
|
|
**Body Paragraph(s):** This is where you connect your experience to the job description. Don't just list duties; show *impact*. Use examples (think STAR method: Situation, Task, Action, Result). Explain *why* you're drawn to *this specific company* β mention their values, projects, or recent news. Show you've done your homework! |
|
* _[ Example: In my previous role at [Previous Company], I spearheaded a project that [Quantifiable achievement relevant to new job], demonstrating my expertise in [Skill required by new job]. I admire [Company Name]'s innovative approach to [Specific Company Initiative], and I believe my skills in [Another Relevant Skill] align perfectly with the requirements of this role and your company culture. ]_ |
|
|
|
**Conclusion:** Reiterate your strong interest and suitability. Briefly summarize your key selling points. State your call to action confidently (e.g., "I am eager to discuss how my skills can benefit [Company Name]..."). Thank the reader for their time and consideration. |
|
* _[ Example: Thank you for considering my application. My attached resume provides further detail on my qualifications. I am excited about the potential to contribute to your team and look forward to hearing from you soon regarding an interview. ]_ |
|
|
|
Sincerely, |
|
|
|
[Your Typed Name] |
|
""" |
|
elif "linkedin summary" in document_type.lower(): |
|
template += """ |
|
### LinkedIn Summary / About Section Template |
|
|
|
**Headline:** [ Make this keyword-rich and concise! Who are you professionally? What's your focus? e.g., 'Software Engineer specializing in AI & Cloud | Python | Ex-Google | Building Innovative Solutions' OR 'Marketing Manager | Driving Growth for SaaS Startups | Content Strategy & Demand Generation' ] |
|
|
|
**About Section:** |
|
|
|
* **[ Paragraph 1: Hook & Overview ]** Start with a compelling statement about your passion, mission, or core expertise. Who are you, what do you do, and what drives you? Use keywords relevant to your target roles/industry. Think of this as your elevator pitch. |
|
* **[ Paragraph 2: Key Skills & Experience Highlights ]** Detail your core competencies, both technical and soft skills. Mention significant experiences, types of projects, or industries you've worked in. Quantify achievements whenever possible (e.g., 'Managed budgets up to $X', 'Increased user engagement by Y%'). Tailor this to attract your desired audience (recruiters, clients, collaborators). |
|
* **[ Paragraph 3: Career Goals & What You're Seeking (Optional but Recommended) ]** Briefly state your current career aspirations. What kind of opportunities, connections, or challenges are you looking for? Be specific if possible (e.g., 'Seeking opportunities in AI ethics', 'Open to collaborating on open-source projects'). |
|
* **[ Paragraph 4: Call to Action / Personality (Optional) ]** You might invite relevant connections, mention personal interests related to your field, or add a touch of personality to make you more memorable. What makes you, you? |
|
* **[ Specialties/Keywords: ]** _[ List 5-15 key terms separated by commas or bullet points that recruiters might search for. e.g., Project Management, Data Analysis, Agile Methodologies, Content Strategy, Python, Java, Cloud Security, UX/UI Design, B2B Marketing ]_ |
|
""" |
|
else: |
|
template += "[ Template structure for this document type will be provided here. Let me know what you need! ]" |
|
|
|
|
|
return {"template_markdown": template} |
|
|
|
def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> Dict[str, Any]: |
|
"""Creates a personalized routine, trying AI first, then falling back to basic.""" |
|
logger.info(f"Executing tool: create_personalized_routine(emo='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})") |
|
|
|
|
|
logger.warning("Using basic fallback for create_personalized_routine for robustness.") |
|
try: |
|
routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days) |
|
if not routine or not isinstance(routine, dict): |
|
raise ValueError("Basic routine generation failed to return a valid dictionary.") |
|
|
|
routine['support_message'] = f"Hey, I know feeling {emotion} while aiming for '{goal}' can be tough. We've got this routine to help break it down. One step at a time, okay? You're doing great just by planning!" |
|
return routine |
|
except Exception as e: |
|
logger.error(f"Error in create_personalized_routine fallback: {e}") |
|
|
|
return {"error": f"Couldn't create a routine right now due to an error: {e}. Maybe try simplifying the goal or adjusting the time?"} |
|
|
|
def analyze_resume(resume_text: str, career_goal: str) -> Dict[str, Any]: |
|
"""Provides analysis of the resume (Simulated - AI analysis would replace this).""" |
|
logger.info(f"Executing tool: analyze_resume(goal='{career_goal}', len={len(resume_text)})") |
|
|
|
|
|
logger.warning("Using placeholder analysis for analyze_resume tool.") |
|
analysis = { |
|
"strengths": [ |
|
"Clear contact information.", |
|
"Uses some action verbs.", |
|
f"Mentions skills relevant to '{career_goal}' (needs verification)." |
|
], |
|
"areas_for_improvement": [ |
|
"Quantify achievements more (e.g., 'Increased X by Y%').", |
|
f"Ensure skills section is tailored specifically for '{career_goal}' roles.", |
|
"Check for consistent formatting and tense.", |
|
"Add a compelling summary/objective statement at the top." |
|
], |
|
"format_feedback": "Overall format seems clean, but check for consistency.", |
|
"content_feedback": f"Content shows potential relevance to '{career_goal}', but needs more specific examples and quantified results.", |
|
"keyword_suggestions": ["Review job descriptions for "+ career_goal +" and incorporate relevant keywords like 'Keyword1', 'Keyword2', 'Keyword3'."], |
|
"next_steps": [ |
|
"Revise bullet points under 'Experience' to include measurable results.", |
|
"Tailor the Summary/Objective and Skills sections for each application.", |
|
"Proofread carefully for any typos or grammatical errors." |
|
] |
|
} |
|
return {"analysis": analysis} |
|
|
|
def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> Dict[str, Any]: |
|
"""Provides analysis of the portfolio (Simulated - AI analysis would replace this).""" |
|
logger.info(f"Executing tool: analyze_portfolio(goal='{career_goal}', url='{portfolio_url}', desc_len={len(portfolio_description)})") |
|
|
|
logger.warning("Using placeholder analysis for analyze_portfolio tool.") |
|
analysis = { |
|
"alignment_with_goal": f"Based on the description, seems moderately aligned with '{career_goal}'. Review specific projects.", |
|
"strengths": [ |
|
"Includes a variety of projects (based on description).", |
|
"Clear description provided helps understand context." |
|
] + (["Portfolio URL provided for direct review."] if portfolio_url else []), |
|
"areas_for_improvement": [ |
|
f"Ensure project descriptions clearly link skills used to '{career_goal}' requirements.", |
|
"Consider adding 1-2 detailed case studies for key projects.", |
|
"Make sure navigation is intuitive (if URL provided)." |
|
], |
|
"presentation_feedback": "Description is helpful. " + (f"Review URL ({portfolio_url}) for visual appeal and clarity." if portfolio_url else "Consider creating an online portfolio if you don't have one."), |
|
"next_steps": [ |
|
"Highlight 2-3 projects most relevant to '{career_goal}' prominently.", |
|
"Get feedback from peers or mentors in your target field.", |
|
"Ensure contact information is easily accessible." |
|
] |
|
} |
|
return {"analysis": analysis} |
|
|
|
def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> Dict[str, Any]: |
|
"""Extracts and rates skills from resume text (Simulated - AI could do this better).""" |
|
logger.info(f"Executing tool: extract_skills(len={len(resume_text)}, max={max_skills})") |
|
|
|
logger.warning("Using placeholder skill extraction for extract_and_rate_skills_from_resume tool.") |
|
possible = ["Python", "Java", "JavaScript", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Cloud Computing", "AWS", "Azure", "GCP", "Agile Methodologies", "Machine Learning", "Marketing", "SEO", "Content Creation"] |
|
found = [] |
|
resume_lower = resume_text.lower() |
|
|
|
for skill in possible: |
|
|
|
if re.search(r'\b' + re.escape(skill.lower()) + r'\b', resume_lower): |
|
|
|
score = random.randint(4, 9) |
|
if "lead" in resume_lower or "manage" in resume_lower or "develop" in resume_lower: |
|
score = min(10, score + random.randint(0, 1)) |
|
found.append({"name": skill, "score": score}) |
|
if len(found) >= max_skills: break |
|
|
|
|
|
if not found and len(resume_text) > 100: |
|
found = [ |
|
{"name": "Communication", "score": random.randint(5,8)}, |
|
{"name": "Teamwork", "score": random.randint(5,8)}, |
|
{"name": "Problem Solving", "score": random.randint(5,8)}, |
|
] |
|
logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found]}") |
|
return {"skills": found[:max_skills]} |
|
|
|
|
|
|
|
def search_web_serper(search_query: str, search_type: str = 'general', location: str = None) -> Dict[str, Any]: |
|
"""Performs a web search using the Serper API.""" |
|
logger.info(f"Executing tool: search_web_serper(query='{search_query}', type='{search_type}', loc='{location}')") |
|
if not SERPER_API_KEY: |
|
logger.error("SERPER_API_KEY not configured.") |
|
return {"error": "Web search functionality is not configured."} |
|
|
|
api_url = "https://google.serper.dev/search" |
|
payload = json.dumps({ |
|
"q": search_query, |
|
"location": location if location else None, |
|
|
|
}) |
|
headers = { |
|
'X-API-KEY': SERPER_API_KEY, |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
try: |
|
response = requests.post(api_url, headers=headers, data=payload, timeout=10) |
|
response.raise_for_status() |
|
results = response.json() |
|
|
|
|
|
extracted_results = [] |
|
if search_type == 'jobs': |
|
|
|
if 'jobs' in results: |
|
for job in results['jobs'][:5]: |
|
extracted_results.append({ |
|
"title": job.get('title'), |
|
"company": job.get('company_name'), |
|
"location": job.get('location'), |
|
"link": job.get('link') |
|
}) |
|
elif 'organic' in results: |
|
for item in results['organic'][:5]: |
|
|
|
if any(kw in item.get('title', '').lower() for kw in ['hiring', 'job', 'career', 'vacancy']): |
|
extracted_results.append({ |
|
"title": item.get('title'), |
|
"snippet": item.get('snippet'), |
|
"link": item.get('link') |
|
}) |
|
elif search_type in ['courses', 'skills']: |
|
|
|
if 'organic' in results: |
|
for item in results['organic'][:5]: |
|
extracted_results.append({ |
|
"title": item.get('title'), |
|
"snippet": item.get('snippet'), |
|
"link": item.get('link') |
|
}) |
|
else: |
|
if 'organic' in results: |
|
for item in results['organic'][:3]: |
|
extracted_results.append({ |
|
"title": item.get('title'), |
|
"snippet": item.get('snippet'), |
|
"link": item.get('link') |
|
}) |
|
|
|
if 'answerBox' in results: |
|
extracted_results.insert(0, { |
|
"type": "Answer Box", |
|
"title": results['answerBox'].get('title'), |
|
"snippet": results['answerBox'].get('snippet') or results['answerBox'].get('answer'), |
|
"link": results['answerBox'].get('link') |
|
}) |
|
|
|
|
|
logger.info(f"Serper search successful for '{search_query}'. Found {len(extracted_results)} relevant items.") |
|
return {"search_results": extracted_results} |
|
|
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Serper API request failed: {e}") |
|
return {"error": f"Web search failed: {e}"} |
|
except Exception as e: |
|
logger.error(f"Error processing Serper response: {e}") |
|
return {"error": "Failed to process web search results."} |
|
|
|
|
|
|
|
def get_ai_response(user_id: str, user_input: str) -> str: |
|
"""Gets response from Google Gemini, handling context, system prompt, and function calls.""" |
|
logger.info(f"Getting AI response for user {user_id}. Input: '{user_input[:100]}...'") |
|
|
|
if not gemini_model: |
|
logger.error("Gemini model not initialized.") |
|
return "I'm sorry, my AI core isn't available right now. Please check the configuration." |
|
|
|
try: |
|
user_profile = get_user_profile(user_id) |
|
if not user_profile: |
|
logger.error(f"Failed profile retrieval for {user_id}.") |
|
return "Uh oh, I couldn't access your profile details right now. Let's try again in a moment?" |
|
|
|
|
|
|
|
current_emotion_display = user_profile.get('current_emotion', 'how you feel') |
|
user_name = user_profile.get('name', 'there') |
|
career_goal = user_profile.get('career_goal', 'your goals') |
|
location = user_profile.get('location', 'your area') |
|
industry = user_profile.get('industry', 'your field') |
|
exp_level = user_profile.get('experience_level', 'your experience level') |
|
|
|
system_prompt = f""" |
|
You are Aishura, an advanced AI career assistant built on Google's Gemini model. Your core mission is to provide **empathetic, supportive, and highly personalized career guidance**. You are talking to {user_name}. |
|
|
|
**Your Persona & Communication Style:** |
|
* **Empathetic & Validating:** ALWAYS acknowledge the user's feelings ({current_emotion_display}). Use phrases like "I hear you," "It sounds like things are tough/exciting," "That makes total sense," "I get it." Validate their experience. |
|
* **Collaborative & Supportive:** Use "we," "us," "together." Frame guidance as a partnership. Phrases: "Okay, let's figure this out together.", "We can tackle this step-by-step.", "I'm here to help you navigate this." |
|
* **Positive & Action-Oriented:** While validating struggles, gently guide towards positive next steps. Focus on what *can* be done. Be realistic but hopeful. |
|
* **Personalized:** Reference the user's profile details subtly: name ({user_name}), goal ({career_goal}), location ({location}), industry ({industry}), experience ({exp_level}). |
|
* **Concise & Clear:** Use markdown for readability (lists, bolding). Avoid jargon. Get to the point while remaining warm. |
|
|
|
**Core Functionality - How to Respond:** |
|
1. **Acknowledge & Empathize:** Start by acknowledging their input and expressed emotion (e.g., "Hey {user_name}, I hear that you're feeling {current_emotion_display}. It's completely understandable given [mention context from user input or goal]."). |
|
2. **Address the Query Directly:** Answer their specific question or respond to their statement clearly. |
|
3. **Leverage Tools Strategically:** |
|
* **Proactive Suggestions:** If they mention needing a resume, cover letter, or LinkedIn help, suggest using `generate_document_template`. If they feel stuck or need structure, suggest `create_personalized_routine`. If they mention their resume or portfolio, offer to analyze it (`analyze_resume`, `analyze_portfolio`). If they want to understand their skills better from their resume, suggest `extract_and_rate_skills_from_resume`. |
|
* **Web Search (`search_jobs_courses_skills`):** |
|
* **Use ONLY when the user explicitly asks for job openings, courses, skill resources, or specific company information.** |
|
* Construct a specific `search_query` based on their request, `career_goal`, `location`, `industry`, and potentially `areas_for_development`. |
|
* Specify `search_type` ('jobs', 'courses', 'skills', 'general'). |
|
* Include `location` if relevant and available. |
|
* **Crucially:** Present the search results clearly. Mention they are *live* results but listings change quickly. Don't just dump links; summarize findings. E.g., "Okay, I found a few promising [type] results for you based on our search:" |
|
* **Do NOT Use Tools If:** The user is just chatting, venting, or asking for general advice that doesn't map directly to a tool's function. Handle these conversationally. |
|
4. **Synthesize Tool Results:** When a tool (especially search) provides results, don't just output the raw data. Explain *why* these results are relevant to the user and their goals. Integrate the findings into your conversational response. |
|
5. **Maintain Context:** Remember the conversation flow and user profile details. |
|
6. **Handle Errors Gracefully:** If a tool fails or returns an error, apologize and explain simply (e.g., "Hmm, I couldn't fetch the [tool purpose] just now. Maybe we can try searching differently, or focus on [alternative action]?"). Do not show technical error messages to the user. |
|
|
|
**Example Snippets:** |
|
* "I got you. Feeling {emotion} is tough, but we'll break down this {goal} together." |
|
* "Okay, based on your goal of {goal} and feeling {emotion}, how about we create a manageable routine? I can use the `create_personalized_routine` tool if you'd like." |
|
* "Finding jobs can be draining. Want me to run a quick search for '{goal}' roles in {location} using the `search_jobs_courses_skills` tool?" |
|
""" |
|
|
|
|
|
|
|
gemini_history = [] |
|
for msg in user_profile.get('chat_history', []): |
|
if msg['role'] == 'function': |
|
|
|
gemini_history.append(genai.protos.Content( |
|
parts=[genai.protos.Part( |
|
function_response=genai.protos.FunctionResponse(name=msg['name'], response=msg['response']) |
|
)] |
|
)) |
|
elif 'parts' in msg: |
|
|
|
|
|
try: |
|
api_parts = [genai.protos.Part(text=p['text']) for p in msg.get('parts', []) if 'text' in p] |
|
if api_parts: |
|
gemini_history.append(genai.protos.Content(role=msg['role'], parts=api_parts)) |
|
except Exception as e: |
|
logger.warning(f"Skipping invalid message structure in history: {msg} - Error: {e}") |
|
|
|
|
|
|
|
current_input_parts = [genai.protos.Part(text=user_input)] |
|
prompt_content = genai.protos.Content(role='user', parts=current_input_parts) |
|
full_prompt_history = gemini_history + [prompt_content] |
|
|
|
logger.info(f"Sending {len(full_prompt_history)} history entries to Gemini model {MODEL_ID}.") |
|
|
|
|
|
|
|
try: |
|
response = gemini_model.generate_content( |
|
full_prompt_history, |
|
generation_config=genai.types.GenerationConfig(temperature=0.7, max_output_tokens=1500), |
|
tools=tools_list_gemini, |
|
tool_config=genai.types.ToolConfig(function_calling_config="AUTO"), |
|
system_instruction=genai.protos.Content(parts=[genai.protos.Part(text=system_prompt)]) |
|
) |
|
|
|
response_message = response.candidates[0].content |
|
finish_reason = response.candidates[0].finish_reason |
|
|
|
except google_exceptions.ResourceExhausted as e: |
|
logger.error(f"Google API Quota Error: {e}") |
|
return "I'm experiencing high demand right now. Let's try that again in a moment?" |
|
except google_exceptions.GoogleAPIError as e: |
|
logger.error(f"Google API Error: {e}") |
|
return f"Sorry, there was an issue connecting to my AI brain ({e.message}). Could you try again?" |
|
except Exception as e: |
|
logger.exception(f"Unexpected error during Gemini API call: {e}") |
|
return "Oh dear, something unexpected happened on my end. Let's pause and retry?" |
|
|
|
|
|
|
|
if response_message.parts[0].function_call.name: |
|
function_call = response_message.parts[0].function_call |
|
func_name = function_call.name |
|
func_args = dict(function_call.args) |
|
|
|
logger.info(f"Gemini requested tool call: '{func_name}' with args: {func_args}") |
|
|
|
|
|
add_chat_message(user_id, "user", user_input) |
|
add_chat_message(user_id, "model", [{'text': f"Thinking... (using tool {func_name})"}]) |
|
|
|
|
|
available_functions = { |
|
"generate_document_template": generate_document_template, |
|
"create_personalized_routine": create_personalized_routine, |
|
"analyze_resume": analyze_resume, |
|
"analyze_portfolio": analyze_portfolio, |
|
"extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume, |
|
"search_jobs_courses_skills": search_web_serper, |
|
} |
|
|
|
function_to_call = available_functions.get(func_name) |
|
function_response_content = None |
|
|
|
if function_to_call: |
|
try: |
|
|
|
if func_name == "analyze_resume": |
|
if 'career_goal' not in func_args: func_args['career_goal'] = career_goal |
|
save_user_resume(user_id, func_args.get('resume_text', '')) |
|
elif func_name == "analyze_portfolio": |
|
if 'career_goal' not in func_args: func_args['career_goal'] = career_goal |
|
save_user_portfolio(user_id, func_args.get('portfolio_url', ''), func_args.get('portfolio_description', '')) |
|
elif func_name == "search_jobs_courses_skills": |
|
|
|
if 'location' not in func_args or not func_args['location']: |
|
func_args['location'] = location if location != 'your area' else None |
|
|
|
|
|
logger.info(f"Calling function '{func_name}' with args: {func_args}") |
|
function_response_content = function_to_call(**func_args) |
|
logger.info(f"Function '{func_name}' returned type: {type(function_response_content)}") |
|
|
|
|
|
tool_response_for_api = genai.protos.Part( |
|
function_response=genai.protos.FunctionResponse( |
|
name=func_name, |
|
response={'content': function_response_content} |
|
) |
|
) |
|
|
|
add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': function_response_content}}) |
|
|
|
|
|
except TypeError as e: |
|
logger.error(f"Argument mismatch for function {func_name}. Args: {func_args}, Error: {e}") |
|
error_response = {"error": f"Internal error: Tool '{func_name}' called with incorrect arguments."} |
|
tool_response_for_api = genai.protos.Part(function_response=genai.protos.FunctionResponse(name=func_name, response={'content': error_response})) |
|
add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': error_response}}) |
|
except Exception as e: |
|
logger.exception(f"Error executing function {func_name}: {e}") |
|
error_response = {"error": f"Sorry, I encountered an error while trying to use the '{func_name}' tool. Please try again or ask differently."} |
|
|
|
tool_response_for_api = genai.protos.Part( |
|
function_response=genai.protos.FunctionResponse( |
|
name=func_name, |
|
response={'content': error_response} |
|
) |
|
) |
|
|
|
add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': error_response}}) |
|
|
|
else: |
|
logger.warning(f"Function {func_name} not implemented.") |
|
error_response = {"error": f"Tool '{func_name}' is not available."} |
|
tool_response_for_api = genai.protos.Part( |
|
function_response=genai.protos.FunctionResponse( |
|
name=func_name, |
|
response={'content': error_response} |
|
) |
|
) |
|
add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': error_response}}) |
|
|
|
|
|
|
|
logger.info(f"Sending function response for '{func_name}' back to Gemini.") |
|
try: |
|
second_response = gemini_model.generate_content( |
|
|
|
gemini_history + [prompt_content, response_message, genai.protos.Content(parts=[tool_response_for_api])], |
|
generation_config=genai.types.GenerationConfig(temperature=0.7, max_output_tokens=1500), |
|
system_instruction=genai.protos.Content(parts=[genai.protos.Part(text=system_prompt)]) |
|
) |
|
final_response_text = second_response.candidates[0].content.parts[0].text |
|
logger.info("Received final response after tool call.") |
|
|
|
except google_exceptions.GoogleAPIError as e: |
|
logger.error(f"Google API Error on second call: {e}") |
|
final_response_text = f"Sorry, there was an issue processing the results from the tool ({e.message}). Let's try again?" |
|
except Exception as e: |
|
logger.exception(f"Unexpected error during second Gemini call: {e}") |
|
final_response_text = "Oh dear, something went wrong while processing the tool's results. Could we try that step again?" |
|
|
|
|
|
add_chat_message(user_id, "model", final_response_text) |
|
return final_response_text |
|
|
|
else: |
|
logger.info("No tool call requested by Gemini.") |
|
final_response_text = response_message.parts[0].text |
|
|
|
add_chat_message(user_id, "user", user_input) |
|
add_chat_message(user_id, "model", final_response_text) |
|
return final_response_text |
|
|
|
except Exception as e: |
|
logger.exception(f"Unexpected error in get_ai_response: {e}") |
|
return "An unexpected error occurred. Please try again later." |
|
|
|
|
|
|
|
def gen_recommendations_simple(user_id): |
|
"""Generate simple recommendations based on profile keywords (Placeholder).""" |
|
logger.info(f"Generating simple recommendations for user {user_id}") |
|
profile = get_user_profile(user_id) |
|
recs = [] |
|
goal = profile.get('career_goal', '').lower() |
|
emotion = profile.get('current_emotion', '').lower() |
|
|
|
|
|
if 'job' in goal or 'internship' in goal: |
|
recs.append({"title": "Refine Resume", "description": f"Tailor your resume for '{goal}' roles. Use keywords from job descriptions.", "priority": "High", "action_type": "Job Application"}) |
|
recs.append({"title": "Practice Interviewing", "description": "Use the STAR method to prepare answers for common behavioral questions.", "priority": "Medium", "action_type": "Skill Building"}) |
|
recs.append({"title": "Network Actively", "description": f"Connect with people in '{profile.get('industry', 'your')}' industry on LinkedIn or attend virtual events.", "priority": "Medium", "action_type": "Networking"}) |
|
|
|
if 'skill' in goal: |
|
recs.append({"title": "Identify Learning Resources", "description": f"Find online courses (Coursera, Udemy, edX) or tutorials for the skills needed for '{goal}'.", "priority": "High", "action_type": "Skill Building"}) |
|
recs.append({"title": "Start a Small Project", "description": f"Apply newly learned skills in a personal project to build portfolio evidence.", "priority": "Medium", "action_type": "Skill Building"}) |
|
|
|
if emotion in ["anxious", "overwhelmed", "stuck", "unmotivated", "discouraged"]: |
|
recs.append({"title": "Focus on Small Wins", "description": "Break down larger tasks into very small, achievable steps. Celebrate completing them!", "priority": "High", "action_type": "Wellbeing"}) |
|
recs.append({"title": "Schedule Breaks", "description": "Ensure you take regular short breaks to avoid burnout. Step away from the screen.", "priority": "Medium", "action_type": "Wellbeing"}) |
|
|
|
|
|
if recs: |
|
|
|
current_recs = profile.get('recommendations', []) |
|
pending_titles = {r['recommendation'].get('title') for r in current_recs if r.get('status') == 'pending'} |
|
new_recs_to_add = [r for r in recs if r.get('title') not in pending_titles] |
|
|
|
for rec in new_recs_to_add[:3]: |
|
add_recommendation_to_user(user_id, rec) |
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
def create_emotion_chart(user_id): |
|
user_profile = get_user_profile(user_id); records = user_profile.get('daily_emotions', []) |
|
if not records: fig = go.Figure(); fig.add_annotation(text="No emotion data yet. How are you feeling today?", showarrow=False); fig.update_layout(title="Your Emotional Journey"); return fig |
|
|
|
vals = {"Unmotivated": 1, "Discouraged": 1.5, "Stuck": 2, "Anxious": 2.5, "Confused": 3, "Overwhelmed": 3.5, "Hopeful": 4.5, "Focused": 5, "Excited": 6} |
|
dates = [datetime.fromisoformat(r['date']) for r in records]; scores = [vals.get(r['emotion'], 3) for r in records]; names = [r['emotion'] for r in records] |
|
df = pd.DataFrame({'Date': dates, 'Score': scores, 'Emotion': names}).sort_values('Date') |
|
fig = px.line(df, x='Date', y='Score', markers=True, labels={"Score": "State"}, title="Your Emotional Journey") |
|
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}', text=df['Emotion']); fig.update_yaxes(tickvals=list(vals.values()), ticktext=list(vals.keys())); return fig |
|
|
|
def create_progress_chart(user_id): |
|
user_profile = get_user_profile(user_id); tasks = user_profile.get('completed_tasks', []) |
|
if not tasks: fig = go.Figure(); fig.add_annotation(text="No tasks completed yet. Let's add one!", showarrow=False); fig.update_layout(title="Progress Points"); return fig |
|
tasks.sort(key=lambda x: datetime.fromisoformat(x['date'])) |
|
dates, points, labels, cum_pts = [], [], [], 0; pts_task = user_profile.get('progress_points', 0) |
|
task_dates = {} |
|
for task in tasks: |
|
task_date_str = datetime.fromisoformat(task['date']).strftime('%Y-%m-%d') |
|
pts = task.get('points', random.randint(10, 25)) |
|
if task_date_str not in task_dates: task_dates[task_date_str] = {'date': datetime.fromisoformat(task['date']).date(), 'points': 0, 'tasks': []} |
|
task_dates[task_date_str]['points'] += pts |
|
task_dates[task_date_str]['tasks'].append(task['task']) |
|
|
|
|
|
sorted_dates = sorted(task_dates.keys()) |
|
cumulative_points = 0 |
|
chart_dates, chart_points, chart_tasks = [], [], [] |
|
for date_str in sorted_dates: |
|
day_data = task_dates[date_str] |
|
cumulative_points += day_data['points'] |
|
chart_dates.append(day_data['date']) |
|
chart_points.append(cumulative_points) |
|
chart_tasks.append("<br>".join(day_data['tasks'])) |
|
|
|
if not chart_dates: |
|
fig = go.Figure(); fig.add_annotation(text="Error processing task data.", showarrow=False); fig.update_layout(title="Progress Points"); return fig |
|
|
|
|
|
df = pd.DataFrame({'Date': chart_dates, 'Points': chart_points, 'Tasks': chart_tasks}) |
|
fig = px.line(df, x='Date', y='Points', markers=True, title="Progress Journey"); fig.update_traces(hovertemplate='%{x|%Y-%m-%d}<br>Points: %{y}<br>Tasks:<br>%{text}', text=df['Tasks']); return fig |
|
|
|
|
|
def create_routine_completion_gauge(user_id): |
|
user_profile = get_user_profile(user_id); routines = user_profile.get('routine_history', []) |
|
if not routines: fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Active Routine"})); fig.add_annotation(text="No routine active. Create one?", showarrow=False); return fig |
|
latest = routines[0]; completion = latest.get('completion', 0); name = latest.get('routine', {}).get('name', 'Routine') |
|
fig = go.Figure(go.Indicator(mode="gauge+number", value=completion, domain={'x': [0, 1], 'y': [0, 1]}, title={'text': f"{name} (%)"}, |
|
gauge={'axis': {'range': [0, 100]}, 'bar': {'color': "cornflowerblue"}, 'bgcolor': "white", 'steps': [{'range': [0, 50], 'color': 'whitesmoke'}, {'range': [50, 80], 'color': 'lightgray'}], 'threshold': {'line': {'color': "green", 'width': 4}, 'thickness': 0.75, 'value': 90}})); return fig |
|
|
|
def create_skill_radar_chart(user_id): |
|
logger.info(f"Creating skill chart for {user_id}"); user_profile = get_user_profile(user_id); path = user_profile.get('resume_path') |
|
if not path or not os.path.exists(path): logger.warning("No resume found for skill chart."); fig = go.Figure(); fig.add_annotation(text="Upload or Analyze Resume for Skill Chart", showarrow=False); fig.update_layout(title="Identified Skills"); return fig |
|
try: |
|
with open(path, 'r', encoding='utf-8') as f: text = f.read() |
|
|
|
skills_data = extract_and_rate_skills_from_resume(resume_text=text) |
|
if 'skills' in skills_data and skills_data['skills']: |
|
skills = skills_data['skills'][:8] |
|
cats = [s['name'] for s in skills]; vals = [s['score'] for s in skills] |
|
if len(cats) < 3: |
|
fig = go.Figure(); fig.add_annotation(text="Need at least 3 skills identified for radar chart.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig |
|
|
|
|
|
if len(cats) > 2: |
|
cats.append(cats[0]) |
|
vals.append(vals[0]) |
|
|
|
fig = go.Figure(); |
|
fig.add_trace(go.Scatterpolar( |
|
r=vals, |
|
theta=cats, |
|
fill='toself', |
|
name='Skills', |
|
hovertemplate='Skill: %{theta}<br>Score: %{r}<extra></extra>' |
|
)) |
|
fig.update_layout( |
|
polar=dict(radialaxis=dict(visible=True, range=[0, 10], showline=False, ticksuffix=' pts')), |
|
showlegend=False, |
|
title="Skill Assessment (from Resume)" |
|
) |
|
logger.info(f"Created radar chart with {len(skills)} skills."); return fig |
|
else: logger.warning("No skills extracted for chart."); fig = go.Figure(); fig.add_annotation(text="No skills extracted from resume yet.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig |
|
except Exception as e: logger.exception(f"Error creating skill chart: {e}"); fig = go.Figure(); fig.add_annotation(text="Error analyzing skills.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig |
|
|
|
|
|
|
|
|
|
|
|
def create_interface(): |
|
"""Create the Gradio interface for Aishura v3""" |
|
|
|
session_user_id = str(uuid.uuid4()) |
|
logger.info(f"Initializing Gradio interface for session user ID: {session_user_id}") |
|
get_user_profile(session_user_id) |
|
|
|
|
|
def welcome(name, location, emotion, goal, industry, exp_level, work_style): |
|
logger.info(f"Welcome: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}', industry='{industry}', exp='{exp_level}', work='{work_style}'") |
|
if not all([name, location, emotion, goal]): |
|
|
|
return ("Please fill in your Name, Location, Emotion, and Goal to get started!", gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()) |
|
|
|
|
|
cleaned_goal = goal.rsplit(" ", 1)[0] if goal[-1].isnumeric() == False and goal[-2] == " " else goal |
|
|
|
|
|
profile_updates = { |
|
"name": name, |
|
"location": location, |
|
"career_goal": cleaned_goal, |
|
"industry": industry, |
|
"experience_level": exp_level, |
|
"preferred_work_style": work_style |
|
} |
|
update_user_profile(session_user_id, profile_updates) |
|
add_emotion_record(session_user_id, emotion) |
|
|
|
|
|
initial_input = f"Hi Aishura! I'm {name} from {location}. I'm focusing on '{cleaned_goal}' in the {industry} industry ({exp_level}, preferring {work_style} work). Right now, I'm feeling {emotion}. Can you help me get started?" |
|
|
|
|
|
ai_response = get_ai_response(session_user_id, initial_input) |
|
|
|
|
|
|
|
|
|
initial_chat_display = [[initial_input, ai_response]] |
|
|
|
|
|
e_fig, p_fig, r_fig, s_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id), create_skill_radar_chart(session_user_id) |
|
recs_md = display_recommendations(session_user_id) |
|
|
|
return ( |
|
gr.update(value=initial_chat_display), |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=r_fig), gr.update(value=s_fig), |
|
gr.update(value=recs_md) |
|
) |
|
|
|
def chat_submit(message_text, history_list_list): |
|
"""Handles chatbot submission, gets AI response, updates history and recommendations.""" |
|
logger.info(f"Chat submit for {session_user_id}: '{message_text[:50]}...'") |
|
if not message_text: |
|
return history_list_list, "" |
|
|
|
|
|
history_list_list.append([message_text, None]) |
|
yield history_list_list, "" |
|
|
|
|
|
ai_response_text = get_ai_response(session_user_id, message_text) |
|
|
|
|
|
history_list_list[-1][1] = ai_response_text |
|
|
|
|
|
gen_recommendations_simple(session_user_id) |
|
recs_md = display_recommendations(session_user_id) |
|
|
|
|
|
yield history_list_list, gr.update(value=recs_md) |
|
|
|
|
|
|
|
|
|
def generate_template_interface_handler(doc_type, career_field, experience): |
|
logger.info(f"Manual Template UI: type='{doc_type}'") |
|
|
|
result_dict = generate_document_template(doc_type, career_field, experience) |
|
return result_dict.get('template_markdown', "Error generating template.") |
|
|
|
def create_routine_interface_handler(emotion, goal, time_available, days): |
|
logger.info(f"Manual Routine UI: emo='{emotion}', goal='{goal}'") |
|
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion |
|
|
|
result_dict = create_personalized_routine(cleaned_emotion, goal, int(time_available), int(days)) |
|
|
|
if "error" in result_dict: |
|
return f"Error: {result_dict['error']}", gr.update() |
|
|
|
|
|
add_routine_to_user(session_user_id, result_dict) |
|
|
|
|
|
md = f"# {result_dict.get('name', 'Your Routine')}\n\n" |
|
md += f"_{result_dict.get('support_message', result_dict.get('description', ''))}_\n\n---\n\n" |
|
for day in result_dict.get('daily_tasks', []): |
|
md += f"## Day {day.get('day', '?')}\n" |
|
tasks = day.get('tasks', []) |
|
if not tasks: |
|
md += "- Rest day or catch-up.\n" |
|
else: |
|
for task in tasks: |
|
md += f"- **{task.get('name', 'Task')}** ({task.get('duration', '?')} min)\n" |
|
md += f" - _{task.get('description', '...')}_\n" |
|
md += "\n" |
|
|
|
gauge = create_routine_completion_gauge(session_user_id) |
|
return md, gr.update(value=gauge) |
|
|
|
def analyze_resume_interface_handler(resume_file): |
|
logger.info(f"Manual Resume Analysis UI: file={resume_file}") |
|
if resume_file is None: |
|
return "Please upload a resume file.", gr.update(value=None), gr.update(value=None) |
|
|
|
try: |
|
|
|
with open(resume_file.name, 'r', encoding='utf-8') as f: |
|
resume_text = f.read() |
|
logger.info(f"Read {len(resume_text)} characters from uploaded resume.") |
|
except Exception as e: |
|
logger.error(f"Error reading uploaded resume file: {e}") |
|
return f"Error reading file: {e}", gr.update(value=None), gr.update(value=None) |
|
|
|
|
|
if not resume_text: |
|
return "Resume file seems empty.", gr.update(value=None), gr.update(value=None) |
|
|
|
profile = get_user_profile(session_user_id) |
|
goal = profile.get('career_goal', 'Not specified') |
|
|
|
|
|
resume_path = save_user_resume(session_user_id, resume_text) |
|
if not resume_path: |
|
return "Could not save resume file for analysis.", gr.update(value=None), gr.update(value=None) |
|
|
|
|
|
|
|
analysis_result = analyze_resume(resume_text, goal) |
|
|
|
try: |
|
analysis = analysis_result.get('analysis', {}) |
|
md = f"## Resume Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n\n" |
|
md += "**Strengths Identified:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["None identified."])]) + "\n\n" |
|
md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["None identified."])]) + "\n\n" |
|
md += f"**Format Feedback:** {analysis.get('format_feedback', 'N/A')}\n" |
|
md += f"**Content Alignment:** {analysis.get('content_feedback', 'N/A')}\n" |
|
md += f"**Suggested Keywords:** {', '.join(analysis.get('keyword_suggestions', ['N/A']))}\n\n" |
|
md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])]) |
|
|
|
|
|
skill_fig = create_skill_radar_chart(session_user_id) |
|
|
|
return md, gr.update(value=skill_fig), gr.update(value=resume_path) |
|
|
|
except Exception as e: |
|
logger.exception("Error formatting resume analysis results.") |
|
return "Error displaying analysis results.", gr.update(value=None), gr.update(value=None) |
|
|
|
def analyze_portfolio_interface_handler(portfolio_url, portfolio_description): |
|
logger.info(f"Manual Portfolio Analysis UI: url='{portfolio_url}'") |
|
if not portfolio_description: |
|
return "Please provide a description of your portfolio." |
|
|
|
profile = get_user_profile(session_user_id) |
|
goal = profile.get('career_goal', 'Not specified') |
|
|
|
|
|
portfolio_path = save_user_portfolio(session_user_id, portfolio_url, portfolio_description) |
|
if not portfolio_path: |
|
return "Could not save portfolio details." |
|
|
|
|
|
|
|
analysis_result = analyze_portfolio(portfolio_description, goal, portfolio_url) |
|
|
|
try: |
|
analysis = analysis_result.get('analysis', {}) |
|
md = f"## Portfolio Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n" |
|
if portfolio_url: md += f"**URL:** {portfolio_url}\n\n" |
|
else: md += "\n" |
|
|
|
md += f"**Alignment with Goal:** {analysis.get('alignment_with_goal', 'N/A')}\n\n" |
|
md += "**Strengths Based on Description:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["N/A"])]) + "\n\n" |
|
md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["N/A"])]) + "\n\n" |
|
md += f"**Presentation Feedback:** {analysis.get('presentation_feedback', 'N/A')}\n\n" |
|
md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])]) |
|
|
|
return md |
|
|
|
except Exception as e: |
|
logger.exception("Error formatting portfolio analysis results.") |
|
return "Error displaying analysis results." |
|
|
|
|
|
def complete_task_handler(task_name): |
|
logger.info(f"Complete Task UI for {session_user_id}: task='{task_name}'") |
|
if not task_name: |
|
return ("Please enter the task you completed.", "", gr.update(), gr.update(), gr.update()) |
|
|
|
updated_profile = add_task_to_user(session_user_id, task_name) |
|
|
|
|
|
if updated_profile and updated_profile.get('routine_history'): |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(session_user_id) |
|
if profile and profile.get('routine_history'): |
|
latest_routine = profile['routine_history'][0] |
|
|
|
increment = random.randint(5, 15) |
|
latest_routine['completion'] = min(100, latest_routine.get('completion', 0) + increment) |
|
save_user_database(db) |
|
|
|
|
|
e_fig, p_fig, g_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id) |
|
|
|
return (f"Awesome job completing '{task_name}'! Keep up the great work!", "", gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=g_fig)) |
|
|
|
def update_emotion_handler(emotion): |
|
logger.info(f"Update Emotion UI for {session_user_id}: emotion='{emotion}'") |
|
if not emotion: |
|
return "Please select how you're feeling.", gr.update() |
|
|
|
add_emotion_record(session_user_id, emotion) |
|
e_fig = create_emotion_chart(session_user_id) |
|
cleaned_display = emotion.split(" ")[0] if " " in emotion else emotion |
|
|
|
return f"Got it. Acknowledging how you feel ({cleaned_display}) is a great step.", gr.update(value=e_fig) |
|
|
|
def display_recommendations(current_user_id): |
|
"""Formats latest recommendations into Markdown for display.""" |
|
logger.info(f"Displaying recommendations for {current_user_id}") |
|
profile = get_user_profile(current_user_id) |
|
recs = profile.get('recommendations', []) |
|
|
|
if not recs: |
|
return "Chat with me about your goals and challenges, and I can suggest some next steps! π" |
|
|
|
|
|
pending_recs = [r for r in recs if r.get('status') == 'pending'][:5] |
|
|
|
if not pending_recs: |
|
return "No pending recommendations right now. Great job, or let's chat to find new ones!" |
|
|
|
md = "### β¨ Here are a few things we could focus on:\n\n" |
|
for i, entry in enumerate(pending_recs, 1): |
|
rec = entry.get('recommendation', {}) |
|
md += f"**{i}. {rec.get('title', 'Recommendation')}**\n" |
|
md += f" - {rec.get('description', 'No description.')}\n" |
|
md += f" - *Priority: {rec.get('priority', 'Medium')} | Type: {rec.get('action_type', 'General')}*\n---\n" |
|
return md |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue", font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]), title="Aishura v3") as app: |
|
gr.Markdown("# Aishura - Your Empathetic AI Career Copilot π") |
|
gr.Markdown("_Leveraging Google Gemini & Real-Time Data_") |
|
|
|
|
|
|
|
|
|
|
|
with gr.Group(visible=True) as welcome_group: |
|
gr.Markdown("## Welcome! Let's personalize your journey.") |
|
gr.Markdown("Tell me a bit about yourself so I can help you better.") |
|
with gr.Row(): |
|
with gr.Column(): |
|
name_input = gr.Textbox(label="What's your first name?") |
|
location_input = gr.Textbox(label="Where are you located (City, Country)?", placeholder="e.g., London, UK") |
|
industry_input = gr.Textbox(label="What's your primary industry or field?", placeholder="e.g., Technology, Healthcare, Finance") |
|
with gr.Column(): |
|
emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling right now?") |
|
goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main career goal currently?") |
|
exp_level_dropdown = gr.Dropdown(choices=["Student", "Entry-Level (0-2 yrs)", "Mid-Level (3-7 yrs)", "Senior-Level (8+ yrs)", "Executive"], label="What's your experience level?") |
|
work_style_dropdown = gr.Dropdown(choices=["On-site", "Hybrid", "Remote", "Any"], label="Preferred work style?", value="Any") |
|
|
|
welcome_button = gr.Button("β¨ Start My Journey with Aishura β¨", variant="primary") |
|
welcome_output = gr.Markdown() |
|
|
|
|
|
with gr.Group(visible=False) as main_interface: |
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("π¬ Chat with Aishura"): |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
|
|
chatbot_display = gr.Chatbot( |
|
label="Aishura", |
|
height=600, |
|
show_copy_button=True, |
|
bubble_full_width=False, |
|
avatar_images=(None, "https://img.icons8.com/external-those-icons-lineal-color-those-icons/96/external-AI-artificial-intelligence-those-icons-lineal-color-those-icons-9.png") |
|
) |
|
msg_textbox = gr.Textbox( |
|
show_label=False, |
|
placeholder="Type your message here... ask for help, share progress, or just vent!", |
|
container=False, |
|
scale=1 |
|
) |
|
|
|
|
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown("### Recommendations") |
|
recommendation_output = gr.Markdown("Loading recommendations...") |
|
refresh_recs_button = gr.Button("π Refresh Recs") |
|
gr.Markdown("---") |
|
gr.Markdown("### Quick Actions") |
|
|
|
|
|
|
|
with gr.TabItem("π οΈ Analyze & Tools"): |
|
with gr.Tabs(): |
|
with gr.TabItem("π Resume Hub"): |
|
gr.Markdown("### Analyze Your Resume") |
|
gr.Markdown("Upload your resume (TXT or PDF - text readable) for analysis and skill identification.") |
|
|
|
resume_file_input = gr.File(label="Upload Resume (.txt, .pdf)", file_types=['.txt', '.pdf']) |
|
|
|
resume_path_display = gr.Textbox(label="Current Resume File", interactive=False) |
|
analyze_resume_button = gr.Button("Analyze Uploaded Resume", variant="primary") |
|
resume_analysis_output = gr.Markdown("Analysis will appear here...") |
|
gr.Markdown("---") |
|
gr.Markdown("### Generate Document Templates") |
|
doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Document Type") |
|
doc_field_input = gr.Textbox(label="Target Career Field (Optional)", placeholder="e.g., Software Engineering") |
|
doc_exp_dropdown = gr.Dropdown(choices=["Student", "Entry-Level", "Mid-Level", "Senior-Level"], label="Experience Level") |
|
generate_template_button = gr.Button("Generate Template") |
|
template_output_md = gr.Markdown("Template will appear here...") |
|
|
|
|
|
with gr.TabItem("π¨ Portfolio Hub"): |
|
gr.Markdown("### Analyze Your Portfolio") |
|
portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)", placeholder="https://yourportfolio.com") |
|
portfolio_desc_input = gr.Textbox(label="Describe your portfolio's content and purpose", lines=5, placeholder="e.g., Collection of web development projects using React and Node.js...") |
|
analyze_portfolio_button = gr.Button("Analyze Portfolio Info", variant="primary") |
|
portfolio_analysis_output = gr.Markdown("Analysis will appear here...") |
|
|
|
with gr.TabItem("π
Routine Builder"): |
|
gr.Markdown("### Create a Personalized Routine") |
|
gr.Markdown("Feeling stuck? Let's build a manageable routine based on how you feel and your goals.") |
|
routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling?") |
|
profile = get_user_profile(session_user_id) |
|
routine_goal_input = gr.Textbox(label="Main Goal for this Routine", value=profile.get('career_goal', '')) |
|
routine_time_slider = gr.Slider(15, 120, 45, step=15, label="Minutes you can dedicate per day") |
|
routine_days_slider = gr.Slider(3, 21, 7, step=1, label="Length of routine (days)") |
|
create_routine_button = gr.Button("Create My Routine", variant="primary") |
|
routine_output_md = gr.Markdown("Your personalized routine will appear here...") |
|
|
|
|
|
|
|
with gr.TabItem("π Track Your Journey"): |
|
gr.Markdown("## Your Progress Dashboard") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### β
Log Completed Task") |
|
task_input = gr.Textbox(label="What did you accomplish?", placeholder="e.g., Updated resume, Applied for job X, Completed course module") |
|
complete_button = gr.Button("Log Task", variant="primary") |
|
task_output = gr.Markdown() |
|
gr.Markdown("---") |
|
gr.Markdown("### π How are you feeling now?") |
|
new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="Select current emotion") |
|
emotion_button = gr.Button("Update Emotion") |
|
emotion_output = gr.Markdown() |
|
with gr.Column(scale=2): |
|
gr.Markdown("### Emotional Journey") |
|
emotion_chart_output = gr.Plot(label="Emotion Trend") |
|
gr.Markdown("### Active Routine Progress") |
|
routine_gauge_output = gr.Plot(label="Routine Completion") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Progress Points") |
|
progress_chart_output = gr.Plot(label="Progress Points Over Time") |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Skills Assessment (from Resume)") |
|
skill_radar_chart_output = gr.Plot(label="Skills Radar") |
|
|
|
|
|
|
|
welcome_button.click( |
|
fn=welcome, |
|
inputs=[name_input, location_input, emotion_dropdown, goal_dropdown, industry_input, exp_level_dropdown, work_style_dropdown], |
|
outputs=[chatbot_display, welcome_group, main_interface, emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output, recommendation_output] |
|
) |
|
|
|
|
|
msg_textbox.submit( |
|
fn=chat_submit, |
|
inputs=[msg_textbox, chatbot_display], |
|
outputs=[chatbot_display, recommendation_output] |
|
).then(lambda: gr.update(value=""), outputs=[msg_textbox]) |
|
|
|
|
|
refresh_recs_button.click( |
|
fn=lambda: display_recommendations(session_user_id), |
|
outputs=[recommendation_output] |
|
) |
|
|
|
|
|
analyze_resume_button.click( |
|
fn=analyze_resume_interface_handler, |
|
inputs=[resume_file_input], |
|
outputs=[resume_analysis_output, skill_radar_chart_output, resume_path_display] |
|
) |
|
analyze_portfolio_button.click( |
|
fn=analyze_portfolio_interface_handler, |
|
inputs=[portfolio_url_input, portfolio_desc_input], |
|
outputs=[portfolio_analysis_output] |
|
) |
|
generate_template_button.click( |
|
fn=generate_template_interface_handler, |
|
inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown], |
|
outputs=[template_output_md] |
|
) |
|
create_routine_button.click( |
|
fn=create_routine_interface_handler, |
|
inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider], |
|
outputs=[routine_output_md, routine_gauge_output] |
|
) |
|
|
|
|
|
complete_button.click( |
|
fn=complete_task_handler, |
|
inputs=[task_input], |
|
outputs=[task_output, task_input, emotion_chart_output, progress_chart_output, routine_gauge_output] |
|
) |
|
emotion_button.click( |
|
fn=update_emotion_handler, |
|
inputs=[new_emotion_dropdown], |
|
outputs=[emotion_output, emotion_chart_output] |
|
) |
|
|
|
return app |
|
|
|
|
|
if __name__ == "__main__": |
|
print("\n--- Aishura v3 Configuration Check ---") |
|
if not GOOGLE_API_KEY: |
|
print("β οΈ WARNING: GOOGLE_API_KEY not found in environment variables. AI features DISABLED.") |
|
else: |
|
print("β
GOOGLE_API_KEY found.") |
|
if not SERPER_API_KEY: |
|
print("β οΈ WARNING: SERPER_API_KEY not found. Live web search DISABLED.") |
|
else: |
|
print("β
SERPER_API_KEY found.") |
|
if not gemini_model: |
|
print("β ERROR: Google Gemini model failed to initialize. AI features DISABLED.") |
|
else: |
|
print(f"β
Google Gemini model '{MODEL_ID}' initialized.") |
|
print("-------------------------------------\n") |
|
|
|
logger.info("Starting Aishura v3 Gradio application...") |
|
aishura_app = create_interface() |
|
|
|
|
|
aishura_app.launch(share=False, debug=False) |
|
logger.info("Aishura Gradio application stopped.") |