Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,107 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
# Load the Qwen2.5-72B-Instruct model
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Load the Qwen2.5-72B-Instruct model
|
6 |
+
model_name = "Qwen/Qwen2.5-72B-Instruct"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
model_name,
|
9 |
+
torch_dtype="auto",
|
10 |
+
device_map="auto"
|
11 |
+
)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Initial messages list for chat history
|
15 |
+
messages = [
|
16 |
+
{"role": "system", "content": "You are an experienced Fashion designer who starts conversation with proper greeting, "
|
17 |
+
"giving valuable and catchy fashion advice and suggestions, stays to the point and precise."}
|
18 |
+
]
|
19 |
+
|
20 |
+
# Function to reset the chat
|
21 |
+
def reset_chat():
|
22 |
+
global messages
|
23 |
+
messages = [] # Reset the message history
|
24 |
+
return [], "New Chat"
|
25 |
+
|
26 |
+
# Function to handle questionnaire submission
|
27 |
+
def submit_questionnaire(name, age, location, gender, ethnicity, height, weight,
|
28 |
+
style_preference, color_palette, everyday_style):
|
29 |
+
# Store questionnaire responses as needed
|
30 |
+
# Placeholder logic for storing responses
|
31 |
+
return "Thank you for completing the questionnaire!"
|
32 |
+
|
33 |
+
# Function to handle chat
|
34 |
+
def chat(user_input):
|
35 |
+
global messages
|
36 |
+
if user_input:
|
37 |
+
# Append user message to the conversation history
|
38 |
+
messages.append({"role": "user", "content": user_input})
|
39 |
+
|
40 |
+
# Prepare input for the model
|
41 |
+
text = tokenizer.apply_chat_template(
|
42 |
+
messages,
|
43 |
+
tokenize=False,
|
44 |
+
add_generation_prompt=True
|
45 |
+
)
|
46 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
47 |
+
|
48 |
+
# Generate a response using the model
|
49 |
+
try:
|
50 |
+
generated_ids = model.generate(
|
51 |
+
**model_inputs,
|
52 |
+
max_new_tokens=512
|
53 |
+
)
|
54 |
+
generated_ids = [
|
55 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
56 |
+
]
|
57 |
+
|
58 |
+
# Decode the response
|
59 |
+
response_content = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
response_content = f"Error: {str(e)}"
|
63 |
+
|
64 |
+
# Store assistant response in the chat history
|
65 |
+
messages.append({"role": "assistant", "content": response_content})
|
66 |
+
|
67 |
+
return messages, response_content
|
68 |
+
return messages, ""
|
69 |
+
|
70 |
+
# Gradio Interface
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("## Fashion Assistant Chatbot")
|
73 |
+
|
74 |
+
# Sidebar for user inputs
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
name = gr.Textbox(label="Name")
|
78 |
+
age = gr.Number(label="Age", value=25, minimum=1, maximum=100)
|
79 |
+
location = gr.Textbox(label="Location")
|
80 |
+
gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"])
|
81 |
+
ethnicity = gr.Radio(label="Ethnicity", choices=["Asian", "Black", "Hispanic", "White", "Other"])
|
82 |
+
height = gr.Number(label="Height (cm)", value=170, minimum=50, maximum=250)
|
83 |
+
weight = gr.Number(label="Weight (kg)", value=70, minimum=20, maximum=200)
|
84 |
+
|
85 |
+
with gr.Column():
|
86 |
+
submit_btn = gr.Button("Submit Questionnaire")
|
87 |
+
reset_btn = gr.Button("Reset Chat")
|
88 |
+
|
89 |
+
# Questionnaire with fashion-related questions
|
90 |
+
style_preference = gr.Radio(label="Which style do you prefer the most?", choices=["Casual", "Formal", "Streetwear", "Athleisure", "Baggy"])
|
91 |
+
color_palette = gr.Radio(label="What color palette do you wear often?", choices=["Neutrals", "Bright Colors", "Pastels", "Dark Shades"])
|
92 |
+
everyday_style = gr.Radio(label="How would you describe your everyday style?", choices=["Relaxed", "Trendy", "Elegant", "Bold"])
|
93 |
+
|
94 |
+
# Chat functionality
|
95 |
+
chatbox = gr.Chatbot(type='messages')
|
96 |
+
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
97 |
+
|
98 |
+
# Connect the buttons to their respective functions
|
99 |
+
output_message = gr.Textbox(label="Output Message", interactive=False)
|
100 |
+
submit_btn.click(submit_questionnaire, inputs=[name, age, location, gender, ethnicity, height, weight,
|
101 |
+
style_preference, color_palette, everyday_style], outputs=output_message)
|
102 |
+
|
103 |
+
reset_btn.click(reset_chat, outputs=[chatbox, output_message]) # Corrected outputs
|
104 |
+
user_input.submit(chat, inputs=user_input, outputs=[chatbox, user_input]) # Fixed to include chatbox output
|
105 |
+
|
106 |
+
# Run the app
|
107 |
+
demo.launch()
|