PSYCHOMETER_2.0 / app.py
ans123's picture
Update app.py
b0b077f verified
raw
history blame
45.7 kB
import gradio as gr
import cv2
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.collections import LineCollection
import os
import datetime
import tempfile
from typing import Dict, List, Tuple, Optional, Union, Any
import google.generativeai as genai
from PIL import Image
import json
import warnings
from deepface import DeepFace
import base64
import io
from pathlib import Path
import traceback
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
# --- Constants ---
VIDEO_FPS = 30 # Target FPS for saved video
CSV_FILENAME_TEMPLATE = "facial_analysis_{timestamp}.csv"
VIDEO_FILENAME_TEMPLATE = "processed_{timestamp}.mp4"
TEMP_DIR = Path("temp_frames")
TEMP_DIR.mkdir(exist_ok=True)
# --- Configure Google Gemini API ---
print("Configuring Google Gemini API...")
try:
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
genai.configure(api_key=GOOGLE_API_KEY)
# Use gemini-1.5-flash for quick responses
model = genai.GenerativeModel('gemini-1.5-flash')
GEMINI_ENABLED = True
print("Google Gemini API configured successfully.")
except Exception as e:
print(f"WARNING: Failed to configure Google Gemini API: {e}")
print("Running with simulated Gemini API responses.")
GEMINI_ENABLED = False
# --- Initialize OpenCV face detector for backup ---
print("Initializing OpenCV face detector...")
try:
# Use OpenCV's built-in face detector as backup
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Check if the face detector loaded successfully
if face_cascade.empty():
print("WARNING: Failed to load face cascade classifier")
else:
print("OpenCV face detector initialized successfully.")
except Exception as e:
print(f"ERROR initializing OpenCV face detector: {e}")
face_cascade = None
# --- Metrics Definition ---
metrics = [
"valence", "arousal", "dominance", "cognitive_load",
"emotional_stability", "openness", "agreeableness",
"neuroticism", "conscientiousness", "extraversion",
"stress_index", "engagement_level"
]
# DeepFace emotion mapping
emotion_mapping = {
"angry": {"valence": 0.2, "arousal": 0.8, "dominance": 0.7},
"disgust": {"valence": 0.2, "arousal": 0.6, "dominance": 0.5},
"fear": {"valence": 0.2, "arousal": 0.8, "dominance": 0.3},
"happy": {"valence": 0.9, "arousal": 0.7, "dominance": 0.6},
"sad": {"valence": 0.3, "arousal": 0.4, "dominance": 0.3},
"surprise": {"valence": 0.6, "arousal": 0.9, "dominance": 0.5},
"neutral": {"valence": 0.5, "arousal": 0.5, "dominance": 0.5}
}
ad_context_columns = ["ad_description", "ad_detail", "ad_type", "gemini_ad_analysis"]
user_state_columns = ["user_state", "enhanced_user_state"]
all_columns = ['timestamp', 'frame_number'] + metrics + ad_context_columns + user_state_columns
initial_metrics_df = pd.DataFrame(columns=all_columns)
# --- Gemini API Functions ---
def call_gemini_api_for_ad(description, detail, ad_type):
"""
Uses Google Gemini to analyze ad context.
"""
print(f"Analyzing ad context: '{description}' ({ad_type})")
if not GEMINI_ENABLED:
# Simulated response
analysis = f"Simulated analysis: Ad='{description or 'N/A'}' ({ad_type}), Focus='{detail or 'N/A'}'."
if not description and not detail:
analysis = "No ad context provided."
print(f"Simulated Gemini Result: {analysis}")
return analysis
else:
try:
prompt = f"""
Please analyze this advertisement context:
- Description: {description}
- Detail focus: {detail}
- Type/Genre: {ad_type}
Provide a concise analysis of what emotional and cognitive responses might be expected from viewers.
Limit your response to 100 words.
"""
response = model.generate_content(prompt)
return response.text
except Exception as e:
print(f"Error calling Gemini for ad context: {e}")
return f"Error analyzing ad context: {str(e)}"
def interpret_metrics_with_gemini(metrics_dict, deepface_results=None, ad_context=None):
"""
Uses Google Gemini to interpret facial metrics and DeepFace results
to determine user state.
"""
if not metrics_dict and not deepface_results:
return "No metrics", "No facial data detected"
if not GEMINI_ENABLED:
# Basic rule-based simulation for user state
valence = metrics_dict.get('valence', 0.5) if metrics_dict else 0.5
arousal = metrics_dict.get('arousal', 0.5) if metrics_dict else 0.5
# Extract emotion from DeepFace if available
dominant_emotion = "neutral"
if deepface_results and "emotion" in deepface_results:
emotion_dict = deepface_results["emotion"]
dominant_emotion = max(emotion_dict.items(), key=lambda x: x[1])[0]
# Simple rule-based simulation
state = dominant_emotion.capitalize() if dominant_emotion != "neutral" else "Neutral"
if valence > 0.65 and arousal > 0.55:
state = "Positive, Engaged"
elif valence < 0.4 and arousal > 0.6:
state = "Stressed, Negative"
enhanced_state = f"The viewer appears {state.lower()} while watching this content."
return state, enhanced_state
else:
try:
# Format metrics for Gemini
metrics_formatted = ""
if metrics_dict:
metrics_formatted = "\nMetrics (0-1 scale):\n" + "\n".join([f"- {k.replace('_', ' ').title()}: {v:.2f}" for k, v in metrics_dict.items()
if k not in ('timestamp', 'frame_number')])
# Format DeepFace results
deepface_formatted = ""
if deepface_results and "emotion" in deepface_results:
emotion_dict = deepface_results["emotion"]
deepface_formatted = "\nDeepFace emotions:\n" + "\n".join([f"- {k.title()}: {v:.2f}" for k, v in emotion_dict.items()])
# Include ad context if available
ad_info = ""
if ad_context:
ad_desc = ad_context.get('ad_description', 'N/A')
ad_type = ad_context.get('ad_type', 'N/A')
ad_info = f"\nThey are watching an advertisement: {ad_desc} (Type: {ad_type})"
prompt = f"""
Analyze the facial expression and emotion of a person watching an advertisement{ad_info}.
Use these combined inputs:{metrics_formatted}{deepface_formatted}
Provide two outputs:
1. User State: A short 1-3 word description of their emotional/cognitive state
2. Enhanced Analysis: A detailed 1-2 sentence interpretation of their reaction to the content
Format as JSON: {{"user_state": "STATE", "enhanced_user_state": "DETAILED ANALYSIS"}}
"""
response = model.generate_content(prompt)
try:
# Try to parse as JSON
result = json.loads(response.text)
return result.get("user_state", "Uncertain"), result.get("enhanced_user_state", "Analysis unavailable")
except json.JSONDecodeError:
# If not valid JSON, try to extract manually
text = response.text
if "user_state" in text and "enhanced_user_state" in text:
parts = text.split("enhanced_user_state")
user_state = parts[0].split("user_state")[1].replace('"', '').replace(':', '').replace(',', '').strip()
enhanced = parts[1].replace('"', '').replace(':', '').replace('}', '').strip()
return user_state, enhanced
else:
# Just return the raw text as enhanced state
return "Analyzed", text
except Exception as e:
print(f"Error calling Gemini for metric interpretation: {e}")
traceback.print_exc()
return "Error", f"Error analyzing facial metrics: {str(e)}"
# --- DeepFace Analysis Function ---
def analyze_face_with_deepface(image):
"""Analyze facial emotions and attributes using DeepFace"""
if image is None:
return None
try:
# Convert to RGB for DeepFace if needed
if len(image.shape) == 3 and image.shape[2] == 3:
# Check if BGR and convert to RGB if needed
if np.mean(image[:,:,0]) < np.mean(image[:,:,2]): # Rough BGR check
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
else:
# Handle grayscale or other formats
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Save image to temp file (DeepFace sometimes works better with files)
temp_img = f"temp_frames/temp_analysis_{time.time()}.jpg"
cv2.imwrite(temp_img, image_rgb)
# Analyze with DeepFace
analysis = DeepFace.analyze(
img_path=temp_img,
actions=['emotion'],
enforce_detection=False, # Don't throw error if face not detected
detector_backend='opencv' # Faster detection
)
# Remove temporary file
try:
os.remove(temp_img)
except:
pass
# Return the first face analysis (assuming single face)
if isinstance(analysis, list) and len(analysis) > 0:
return analysis[0]
else:
return analysis
except Exception as e:
print(f"DeepFace analysis error: {e}")
return None
# --- Face Detection Backup with OpenCV ---
def detect_face_opencv(image):
"""Detect faces using OpenCV cascade classifier as backup"""
if image is None or face_cascade is None:
return None
try:
# Convert to grayscale for detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
if len(faces) == 0:
return None
# Get the largest face by area
largest_face = max(faces, key=lambda rect: rect[2] * rect[3])
return {"rect": largest_face}
except Exception as e:
print(f"Error in OpenCV face detection: {e}")
return None
# --- Calculate Metrics from DeepFace Results ---
def calculate_metrics_from_deepface(deepface_results, ad_context=None):
"""
Calculate psychometric metrics from DeepFace analysis results
"""
if ad_context is None:
ad_context = {}
# Initialize default metrics
default_metrics = {m: 0.5 for m in metrics}
# If no facial data, return defaults
if not deepface_results or "emotion" not in deepface_results:
return default_metrics
# Extract emotion data from DeepFace
emotion_dict = deepface_results["emotion"]
# Find dominant emotion
dominant_emotion = max(emotion_dict.items(), key=lambda x: x[1])[0]
dominant_score = max(emotion_dict.items(), key=lambda x: x[1])[1] / 100.0 # Convert to 0-1 scale
# Get base values from emotion mapping
base_vals = emotion_mapping.get(dominant_emotion, {"valence": 0.5, "arousal": 0.5, "dominance": 0.5})
# Calculate primary metrics with confidence weighting
val = base_vals["valence"]
arsl = base_vals["arousal"]
dom = base_vals["dominance"]
# Add directional adjustments based on specific emotions
if dominant_emotion == "happy":
val += 0.1
elif dominant_emotion == "sad":
val -= 0.1
elif dominant_emotion == "angry":
arsl += 0.1
dom += 0.1
elif dominant_emotion == "fear":
arsl += 0.1
dom -= 0.1
# Illustrative Context Adjustments from ad
ad_type = ad_context.get('ad_type', 'Unknown')
gem_txt = str(ad_context.get('gemini_ad_analysis', '')).lower()
# Adjust based on ad context
val_adj = 0.1 if ad_type == 'Funny' or 'humor' in gem_txt else 0.0
arsl_adj = 0.1 if ad_type == 'Action' or 'exciting' in gem_txt else 0.0
# Apply adjustments
val = max(0, min(1, val + val_adj))
arsl = max(0, min(1, arsl + arsl_adj))
# Estimate cognitive load based on emotional intensity
cl = 0.5 # Default
if dominant_emotion in ["neutral"]:
cl = 0.3 # Lower cognitive load for neutral expression
elif dominant_emotion in ["surprise", "fear"]:
cl = 0.7 # Higher cognitive load for surprise/fear
# Calculate secondary metrics
neur = max(0, min(1, (cl * 0.6) + ((1.0 - val) * 0.4)))
em_stab = 1.0 - neur
extr = max(0, min(1, (arsl * 0.5) + (val * 0.5)))
open = max(0, min(1, 0.5 + (val - 0.5) * 0.5))
agree = max(0, min(1, (val * 0.7) + ((1.0 - arsl) * 0.3)))
consc = max(0, min(1, (1.0 - abs(arsl - 0.5)) * 0.7 + (em_stab * 0.3)))
stress = max(0, min(1, (cl * 0.5) + ((1.0 - val) * 0.5)))
engag = max(0, min(1, arsl * 0.7 + (val * 0.3)))
# Create metrics dictionary
calculated_metrics = {
'valence': val,
'arousal': arsl,
'dominance': dom,
'cognitive_load': cl,
'emotional_stability': em_stab,
'openness': open,
'agreeableness': agree,
'neuroticism': neur,
'conscientiousness': consc,
'extraversion': extr,
'stress_index': stress,
'engagement_level': engag
}
return calculated_metrics
def update_metrics_visualization(metrics_values):
"""Create a visualization of metrics"""
if not metrics_values:
fig, ax = plt.subplots(figsize=(10, 8))
ax.text(0.5, 0.5, "Waiting for facial metrics...", ha='center', va='center')
ax.axis('off')
fig.patch.set_facecolor('#FFFFFF')
ax.set_facecolor('#FFFFFF')
return fig
# Filter out non-metric keys
filtered_metrics = {k: v for k, v in metrics_values.items()
if k in metrics and isinstance(v, (int, float))}
if not filtered_metrics:
fig, ax = plt.subplots(figsize=(10, 8))
ax.text(0.5, 0.5, "No valid metrics available", ha='center', va='center')
ax.axis('off')
return fig
num_metrics = len(filtered_metrics)
nrows = (num_metrics + 2) // 3
fig, axs = plt.subplots(nrows, 3, figsize=(10, nrows * 2.5), facecolor='#FFFFFF')
axs = axs.flatten()
colors = [(0.1, 0.1, 0.9), (0.9, 0.9, 0.1), (0.9, 0.1, 0.1)]
cmap = LinearSegmentedColormap.from_list("custom_cmap", colors, N=100)
norm = plt.Normalize(0, 1)
metric_idx = 0
for key, value in filtered_metrics.items():
value = max(0.0, min(1.0, value)) # Clip value for safety
ax = axs[metric_idx]
ax.set_title(key.replace('_', ' ').title(), fontsize=10)
ax.set_xlim(0, 1)
ax.set_ylim(0, 0.5)
ax.set_aspect('equal')
ax.axis('off')
ax.set_facecolor('#FFFFFF')
r = 0.4
theta = np.linspace(np.pi, 0, 100)
x_bg = 0.5 + r * np.cos(theta)
y_bg = 0.1 + r * np.sin(theta)
ax.plot(x_bg, y_bg, 'k-', linewidth=3, alpha=0.2)
value_angle = np.pi * (1 - value)
num_points = max(2, int(100 * value))
value_theta = np.linspace(np.pi, value_angle, num_points)
x_val = 0.5 + r * np.cos(value_theta)
y_val = 0.1 + r * np.sin(value_theta)
if len(x_val) > 1:
points = np.array([x_val, y_val]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
segment_values = np.linspace(0, value, len(segments))
lc = LineCollection(segments, cmap=cmap, norm=norm)
lc.set_array(segment_values)
lc.set_linewidth(5)
ax.add_collection(lc)
ax.text(0.5, 0.15, f"{value:.2f}", ha='center', va='center', fontsize=11,
fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, boxstyle='round,pad=0.2'))
metric_idx += 1
for i in range(metric_idx, len(axs)):
axs[i].axis('off')
plt.tight_layout(pad=0.5)
return fig
def annotate_frame(frame, face_data=None, deepface_results=None, metrics=None, enhanced_state=None):
"""
Add facial annotations and metrics to a frame
"""
if frame is None:
return None
annotated = frame.copy()
# Draw face rectangle if available
if face_data and "rect" in face_data:
x, y, w, h = face_data["rect"]
cv2.rectangle(annotated, (x, y), (x + w, y + h), (0, 255, 0), 2)
elif deepface_results and "region" in deepface_results:
region = deepface_results["region"]
x, y, w, h = region["x"], region["y"], region["w"], region["h"]
cv2.rectangle(annotated, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Add emotion and metrics summary
if deepface_results or metrics:
# Format for display
h, w = annotated.shape[:2]
y_pos = 30 # Starting Y position
# Add emotion info if available from DeepFace
if deepface_results and "dominant_emotion" in deepface_results:
emotion_text = f"Emotion: {deepface_results['dominant_emotion'].capitalize()}"
text_size = cv2.getTextSize(emotion_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
cv2.rectangle(annotated, (10, y_pos - 20), (10 + text_size[0], y_pos + 5), (0, 0, 0), -1)
cv2.putText(annotated, emotion_text, (10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_pos += 30
# Add enhanced user state if available
if enhanced_state:
# Truncate if too long
if len(enhanced_state) > 60:
enhanced_state = enhanced_state[:57] + "..."
# Draw background for text
text_size = cv2.getTextSize(enhanced_state, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
cv2.rectangle(annotated, (10, y_pos - 20), (10 + text_size[0], y_pos + 5), (0, 0, 0), -1)
# Draw text
cv2.putText(annotated, enhanced_state, (10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_pos += 30
# Show top 3 metrics
if metrics:
top_metrics = sorted([(k, v) for k, v in metrics.items() if k in metrics],
key=lambda x: x[1], reverse=True)[:3]
for name, value in top_metrics:
metric_text = f"{name.replace('_', ' ').title()}: {value:.2f}"
text_size = cv2.getTextSize(metric_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
cv2.rectangle(annotated, (10, y_pos - 15), (10 + text_size[0], y_pos + 5), (0, 0, 0), -1)
cv2.putText(annotated, metric_text, (10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
y_pos += 25
return annotated
# --- API 1: Video File Processing ---
def process_video_file(
video_file: Union[str, np.ndarray],
ad_description: str = "",
ad_detail: str = "",
ad_type: str = "Video",
sampling_rate: int = 5, # Process every Nth frame
save_processed_video: bool = True,
show_progress: bool = True
) -> Tuple[str, str, pd.DataFrame, List[np.ndarray]]:
"""
Process a video file and analyze facial expressions frame by frame
Args:
video_file: Path to video file or video array
ad_description: Description of the ad being watched
ad_detail: Detail focus of the ad
ad_type: Type of ad (Video, Image, Audio, Text, Funny, etc.)
sampling_rate: Process every Nth frame
save_processed_video: Whether to save the processed video with annotations
show_progress: Whether to show processing progress
Returns:
Tuple of (csv_path, processed_video_path, metrics_dataframe, processed_frames_list)
"""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_path = CSV_FILENAME_TEMPLATE.format(timestamp=timestamp)
video_path = VIDEO_FILENAME_TEMPLATE.format(timestamp=timestamp) if save_processed_video else None
# Setup ad context
gemini_result = call_gemini_api_for_ad(ad_description, ad_detail, ad_type)
ad_context = {
"ad_description": ad_description,
"ad_detail": ad_detail,
"ad_type": ad_type,
"gemini_ad_analysis": gemini_result
}
# Initialize capture
if isinstance(video_file, str):
cap = cv2.VideoCapture(video_file)
else:
# Create a temporary file for the video array
temp_dir = tempfile.mkdtemp()
temp_path = os.path.join(temp_dir, "temp_video.mp4")
# Convert video array to file
if isinstance(video_file, np.ndarray) and len(video_file.shape) == 4: # Multiple frames
h, w = video_file[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_writer = cv2.VideoWriter(temp_path, fourcc, 30, (w, h))
for frame in video_file:
temp_writer.write(frame)
temp_writer.release()
cap = cv2.VideoCapture(temp_path)
elif isinstance(video_file, np.ndarray) and len(video_file.shape) == 3: # Single frame
# For single frame, just process it directly
metrics_data = []
processed_frames = []
# Process the single frame
deepface_results = analyze_face_with_deepface(video_file)
face_data = None
# Fall back to OpenCV face detection if DeepFace didn't detect a face
if not deepface_results or "region" not in deepface_results:
face_data = detect_face_opencv(video_file)
# Calculate metrics if face detected
if deepface_results or face_data:
calculated_metrics = calculate_metrics_from_deepface(deepface_results, ad_context)
user_state, enhanced_state = interpret_metrics_with_gemini(calculated_metrics, deepface_results, ad_context)
# Create a row for the dataframe
row = {
'timestamp': 0.0,
'frame_number': 0,
**calculated_metrics,
**ad_context,
'user_state': user_state,
'enhanced_user_state': enhanced_state
}
metrics_data.append(row)
# Annotate the frame
annotated_frame = annotate_frame(video_file, face_data, deepface_results, calculated_metrics, enhanced_state)
processed_frames.append(annotated_frame)
# Save processed image
if save_processed_video:
cv2.imwrite(video_path.replace('.mp4', '.jpg'), annotated_frame)
# Create DataFrame and save to CSV
metrics_df = pd.DataFrame(metrics_data)
if not metrics_df.empty:
metrics_df.to_csv(csv_path, index=False)
return csv_path, video_path.replace('.mp4', '.jpg') if save_processed_video else None, metrics_df, processed_frames
else:
print("Error: Invalid video input format")
return None, None, None, []
if not cap.isOpened():
print("Error: Could not open video.")
return None, None, None, []
# Get video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Initialize video writer if saving processed video
if save_processed_video:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(video_path, fourcc, fps / sampling_rate, (frame_width, frame_height))
# Process video frames
metrics_data = []
processed_frames = []
frame_count = 0
if show_progress:
print(f"Processing video with {total_frames} frames at {fps} FPS")
print(f"Ad Context: {ad_description} ({ad_type})")
while True:
ret, frame = cap.read()
if not ret:
break
# Only process every Nth frame (according to sampling_rate)
if frame_count % sampling_rate == 0:
if show_progress and frame_count % (sampling_rate * 10) == 0:
print(f"Processing frame {frame_count}/{total_frames} ({frame_count/total_frames*100:.1f}%)")
# Analyze with DeepFace
deepface_results = analyze_face_with_deepface(frame)
face_data = None
# Fall back to OpenCV face detection if DeepFace didn't detect a face
if not deepface_results or "region" not in deepface_results:
face_data = detect_face_opencv(frame)
# Calculate metrics if face detected
if deepface_results or face_data:
calculated_metrics = calculate_metrics_from_deepface(deepface_results, ad_context)
user_state, enhanced_state = interpret_metrics_with_gemini(calculated_metrics, deepface_results, ad_context)
# Create a row for the dataframe
row = {
'timestamp': frame_count / fps,
'frame_number': frame_count,
**calculated_metrics,
**ad_context,
'user_state': user_state,
'enhanced_user_state': enhanced_state
}
metrics_data.append(row)
# Annotate the frame
annotated_frame = annotate_frame(frame, face_data, deepface_results, calculated_metrics, enhanced_state)
if save_processed_video:
out.write(annotated_frame)
processed_frames.append(annotated_frame)
else:
# No face detected
if save_processed_video:
# Add text to frame
no_face_frame = frame.copy()
cv2.putText(no_face_frame, "No face detected", (30, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
out.write(no_face_frame)
processed_frames.append(no_face_frame)
frame_count += 1
# Release resources
cap.release()
if save_processed_video:
out.release()
# Create DataFrame and save to CSV
metrics_df = pd.DataFrame(metrics_data)
if not metrics_df.empty:
metrics_df.to_csv(csv_path, index=False)
if show_progress:
print(f"Video processing complete. Analyzed {len(metrics_data)} frames.")
print(f"Results saved to {csv_path}")
if save_processed_video:
print(f"Processed video saved to {video_path}")
# Return results
return csv_path, video_path, metrics_df, processed_frames
# --- API 2: Webcam Processing Function ---
def process_webcam_frame(
frame: np.ndarray,
ad_context: Dict[str, Any],
metrics_data: pd.DataFrame,
frame_count: int,
start_time: float
) -> Tuple[np.ndarray, Dict[str, float], str, pd.DataFrame]:
"""
Process a single webcam frame
Args:
frame: Input frame from webcam
ad_context: Ad context dictionary
metrics_data: DataFrame to accumulate metrics
frame_count: Current frame count
start_time: Start time of the session
Returns:
Tuple of (annotated_frame, metrics_dict, enhanced_state, updated_metrics_df)
"""
if frame is None:
return None, None, None, metrics_data
# Analyze with DeepFace
deepface_results = analyze_face_with_deepface(frame)
face_data = None
# Fall back to OpenCV face detection if DeepFace didn't detect a face
if not deepface_results or "region" not in deepface_results:
face_data = detect_face_opencv(frame)
# Calculate metrics if face detected
if deepface_results or face_data:
calculated_metrics = calculate_metrics_from_deepface(deepface_results, ad_context)
user_state, enhanced_state = interpret_metrics_with_gemini(calculated_metrics, deepface_results, ad_context)
# Create a row for the dataframe
current_time = time.time()
row = {
'timestamp': current_time - start_time,
'frame_number': frame_count,
**calculated_metrics,
**ad_context,
'user_state': user_state,
'enhanced_user_state': enhanced_state
}
# Add row to DataFrame
new_row_df = pd.DataFrame([row], columns=all_columns)
metrics_data = pd.concat([metrics_data, new_row_df], ignore_index=True)
# Annotate the frame
annotated_frame = annotate_frame(frame, face_data, deepface_results, calculated_metrics, enhanced_state)
return annotated_frame, calculated_metrics, enhanced_state, metrics_data
else:
# No face detected
no_face_frame = frame.copy()
cv2.putText(no_face_frame, "No face detected", (30, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
return no_face_frame, None, "No face detected", metrics_data
def start_webcam_session(
ad_description: str = "",
ad_detail: str = "",
ad_type: str = "Video",
save_interval: int = 100, # Save CSV every N frames
record_video: bool = True
) -> Dict[str, Any]:
"""
Initialize a webcam session for facial analysis
Args:
ad_description: Description of the ad being watched
ad_detail: Detail focus of the ad
ad_type: Type of ad
save_interval: How often to save data to CSV
record_video: Whether to record processed frames for later saving
Returns:
Session context dictionary
"""
# Generate timestamp for file naming
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_path = CSV_FILENAME_TEMPLATE.format(timestamp=timestamp)
video_path = VIDEO_FILENAME_TEMPLATE.format(timestamp=timestamp) if record_video else None
# Setup ad context
gemini_result = call_gemini_api_for_ad(ad_description, ad_detail, ad_type)
ad_context = {
"ad_description": ad_description,
"ad_detail": ad_detail,
"ad_type": ad_type,
"gemini_ad_analysis": gemini_result
}
# Initialize session context
session = {
"start_time": time.time(),
"frame_count": 0,
"metrics_data": initial_metrics_df.copy(),
"ad_context": ad_context,
"csv_path": csv_path,
"video_path": video_path,
"save_interval": save_interval,
"last_saved": 0,
"record_video": record_video,
"recorded_frames": [] if record_video else None,
"timestamps": [] if record_video else None
}
return session
def update_webcam_session(
session: Dict[str, Any],
frame: np.ndarray
) -> Tuple[np.ndarray, Dict[str, float], str, Dict[str, Any]]:
"""
Update webcam session with a new frame
Args:
session: Session context dictionary
frame: New frame from webcam
Returns:
Tuple of (annotated_frame, metrics_dict, enhanced_state, updated_session)
"""
# Process the frame
annotated_frame, metrics, enhanced_state, updated_df = process_webcam_frame(
frame,
session["ad_context"],
session["metrics_data"],
session["frame_count"],
session["start_time"]
)
# Update session
session["frame_count"] += 1
session["metrics_data"] = updated_df
# Record frame if enabled
if session["record_video"] and annotated_frame is not None:
session["recorded_frames"].append(annotated_frame)
session["timestamps"].append(time.time() - session["start_time"])
# Save CSV periodically
if session["frame_count"] - session["last_saved"] >= session["save_interval"]:
if not updated_df.empty:
updated_df.to_csv(session["csv_path"], index=False)
session["last_saved"] = session["frame_count"]
return annotated_frame, metrics, enhanced_state, session
def end_webcam_session(session: Dict[str, Any]) -> Tuple[str, str]:
"""
End a webcam session and save final results
Args:
session: Session context dictionary
Returns:
Tuple of (csv_path, video_path)
"""
# Save final metrics to CSV
if not session["metrics_data"].empty:
session["metrics_data"].to_csv(session["csv_path"], index=False)
# Save recorded video if available
video_path = None
if session["record_video"] and session["recorded_frames"]:
try:
frames = session["recorded_frames"]
if frames:
# Get frame dimensions
height, width = frames[0].shape[:2]
# Calculate FPS based on actual timestamps
if len(session["timestamps"]) > 1:
# Calculate average time between frames
time_diffs = np.diff(session["timestamps"])
avg_frame_time = np.mean(time_diffs)
fps = 1.0 / avg_frame_time if avg_frame_time > 0 else 15.0
else:
fps = 15.0 # Default FPS
# Create video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_path = session["video_path"]
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
# Write frames
for frame in frames:
out.write(frame)
out.release()
print(f"Recorded video saved to {video_path}")
else:
print("No frames recorded")
except Exception as e:
print(f"Error saving video: {e}")
print(f"Session ended. Data saved to {session['csv_path']}")
return session["csv_path"], video_path
# --- Create Gradio Interface ---
def create_api_interface():
with gr.Blocks(title="Facial Analysis APIs") as iface:
gr.Markdown(f"""
# Enhanced Facial Analysis APIs (DeepFace)
This interface provides two API endpoints:
1. **Video File API**: Upload and analyze pre-recorded videos
2. **Webcam API**: Analyze live webcam feed in real-time
Both APIs use DeepFace for emotion analysis and Google's Gemini API for enhanced interpretations.
""")
with gr.Tab("Video File API"):
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload Video")
vid_ad_desc = gr.Textbox(label="Ad Description", placeholder="Enter a description of the advertisement being watched...")
vid_ad_detail = gr.Textbox(label="Ad Detail Focus", placeholder="Enter specific aspects to focus on...")
vid_ad_type = gr.Radio(
["Video", "Image", "Audio", "Text", "Funny", "Serious", "Action", "Informative"],
label="Ad Type/Genre",
value="Video"
)
sampling_rate = gr.Slider(
minimum=1, maximum=30, step=1, value=5,
label="Sampling Rate (process every N frames)"
)
save_video = gr.Checkbox(label="Save Processed Video", value=True)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="Processing Results", lines=3)
with gr.Row():
with gr.Column():
output_video = gr.Video(label="Processed Video")
with gr.Column():
frame_gallery = gr.Gallery(label="Processed Frames",
show_label=True, columns=2,
height=400)
with gr.Row():
with gr.Column():
output_plot = gr.Plot(label="Sample Frame Metrics")
with gr.Column():
output_csv = gr.File(label="Download CSV Results")
# Define function to handle video processing and show frames
def handle_video_processing(video, desc, detail, ad_type, rate, save_vid):
if video is None:
return "No video uploaded", None, None, [], None
try:
result_text = "Starting video processing...\n"
# Process the video
csv_path, video_path, metrics_df, processed_frames = process_video_file(
video,
ad_description=desc,
ad_detail=detail,
ad_type=ad_type,
sampling_rate=rate,
save_processed_video=save_vid,
show_progress=True
)
if metrics_df is None or metrics_df.empty:
return "No facial data detected in video", None, None, [], None
# Generate a sample metrics visualization
sample_row = metrics_df.iloc[0].to_dict()
metrics_plot = update_metrics_visualization(sample_row)
# Create a gallery of processed frames
# Take a subset if there are too many frames (maximum ~20 for display)
display_frames = []
step = max(1, len(processed_frames) // 20)
for i in range(0, len(processed_frames), step):
if i < len(processed_frames):
# Convert BGR to RGB for display
rgb_frame = cv2.cvtColor(processed_frames[i], cv2.COLOR_BGR2RGB)
display_frames.append(rgb_frame)
# Return results summary
processed_count = metrics_df.shape[0]
total_count = len(processed_frames)
result_text = f"✅ Processed {processed_count} frames out of {total_count} total frames.\n"
result_text += f"📊 CSV saved with {len(metrics_df.columns)} metrics columns.\n"
if video_path:
result_text += f"🎬 Processed video saved to: {video_path}"
return result_text, video_path, metrics_plot, display_frames, csv_path
except Exception as e:
return f"❌ Error processing video: {str(e)}", None, None, [], None
process_btn.click(
handle_video_processing,
inputs=[video_input, vid_ad_desc, vid_ad_detail, vid_ad_type, sampling_rate, save_video],
outputs=[output_text, output_video, output_plot, frame_gallery, output_csv]
)
with gr.Tab("Webcam API"):
with gr.Row():
with gr.Column(scale=2):
webcam_input = gr.Image(sources="webcam", streaming=True, label="Webcam Input", type="numpy")
with gr.Row():
with gr.Column():
web_ad_desc = gr.Textbox(label="Ad Description", placeholder="Enter a description of the advertisement being watched...")
web_ad_detail = gr.Textbox(label="Ad Detail Focus", placeholder="Enter specific aspects to focus on...")
web_ad_type = gr.Radio(
["Video", "Image", "Audio", "Text", "Funny", "Serious", "Action", "Informative"],
label="Ad Type/Genre",
value="Video"
)
with gr.Column():
record_video_chk = gr.Checkbox(label="Record Video", value=True)
start_session_btn = gr.Button("Start Session", variant="primary")
end_session_btn = gr.Button("End Session", variant="stop")
session_status = gr.Textbox(label="Session Status", placeholder="Session not started...")
with gr.Column(scale=2):
processed_output = gr.Image(label="Processed Feed", type="numpy", height=360)
with gr.Row():
with gr.Column():
metrics_plot = gr.Plot(label="Current Metrics", height=300)
with gr.Column():
enhanced_state_txt = gr.Textbox(label="Enhanced State Analysis", lines=3)
with gr.Row():
download_csv = gr.File(label="Download Session Data")
download_video = gr.Video(label="Recorded Session")
# Session state
session_data = gr.State(value=None)
# Define session handlers
def start_session(desc, detail, ad_type, record_video):
session = start_webcam_session(
ad_description=desc,
ad_detail=detail,
ad_type=ad_type,
record_video=record_video
)
return (
session,
f"Session started at {datetime.datetime.now().strftime('%H:%M:%S')}.\n"
f"Ad context: {desc} ({ad_type}).\n"
f"Data will be saved to {session['csv_path']}"
)
def process_frame(frame, session):
if session is None:
return frame, None, "No active session. Click 'Start Session' to begin.", session
# Process the frame
annotated_frame, metrics, enhanced_state, updated_session = update_webcam_session(session, frame)
# Update the metrics plot if metrics available
if metrics:
metrics_plot = update_metrics_visualization(metrics)
return annotated_frame, metrics_plot, enhanced_state, updated_session
else:
# Return the annotated frame (likely with "No face detected")
return annotated_frame, None, enhanced_state or "No metrics available", updated_session
def end_session(session):
if session is None:
return "No active session", None, None
csv_path, video_path = end_webcam_session(session)
end_time = datetime.datetime.now().strftime('%H:%M:%S')
result = f"Session ended at {end_time}.\n"
if csv_path:
result += f"CSV data saved to: {csv_path}\n"
if video_path:
result += f"Video saved to: {video_path}"
return result, csv_path, video_path
start_session_btn.click(
start_session,
inputs=[web_ad_desc, web_ad_detail, web_ad_type, record_video_chk],
outputs=[session_data, session_status]
)
webcam_input.stream(
process_frame,
inputs=[webcam_input, session_data],
outputs=[processed_output, metrics_plot, enhanced_state_txt, session_data]
)
end_session_btn.click(
end_session,
inputs=[session_data],
outputs=[session_status, download_csv, download_video]
)
return iface
# Entry point
if __name__ == "__main__":
print("Starting Enhanced Facial Analysis API (DeepFace)...")
print(f"Gemini API {'enabled' if GEMINI_ENABLED else 'disabled (using simulation)'}")
iface = create_api_interface()
iface.launch(debug=True)