Luna_AI / app.py
anshharora's picture
Update app.py
7d18b6a verified
raw
history blame
7.6 kB
import sounddevice as sd
import scipy.io.wavfile as wav
import numpy as np
from pydub import AudioSegment
import io
import tempfile
import os
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class AudioProcessor:
def __init__(self):
self.sample_rate = 16000
self.channels = 1
def process_audio(self, audio_file):
"""Process incoming audio file and convert to proper format"""
with tempfile.TemporaryDirectory() as temp_dir:
# Save incoming audio
input_path = os.path.join(temp_dir, 'input.webm')
audio_file.save(input_path)
# Convert to WAV using pydub
audio = AudioSegment.from_file(input_path)
audio = audio.set_channels(self.channels)
audio = audio.set_frame_rate(self.sample_rate)
output_path = os.path.join(temp_dir, 'output.wav')
audio.export(output_path, format='wav')
# Read the processed audio file
return output_path
def record_audio(self, duration=5):
"""Record audio using sounddevice"""
recording = sd.rec(
int(duration * self.sample_rate),
samplerate=self.sample_rate,
channels=self.channels
)
sd.wait()
return recording
try:
import pyaudio
except ImportError:
print("Warning: PyAudio not available, speech functionality will be limited")
# Initialize Flask app
app = Flask(__name__, static_folder='static')
# Load environment variables
load_dotenv()
# Groq API Configuration
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
MODEL = "llama3-70b-8192"
# Initialize speech recognition
recognizer = sr.Recognizer()
def init_speech_recognition():
"""Initialize speech recognition with fallback options"""
try:
recognizer = sr.Recognizer()
return recognizer
except Exception as e:
logger.error(f"Failed to initialize speech recognition: {e}")
return None
# Store conversation history
conversations = {}
def load_base_prompt():
try:
with open("base_prompt.txt", "r") as file:
return file.read().strip()
except FileNotFoundError:
print("Error: base_prompt.txt file not found.")
return "You are a helpful assistant for language learning."
# Load the base prompt
base_prompt = load_base_prompt()
def chat_with_groq(user_message, conversation_id=None):
try:
# Get conversation history or create new
messages = conversations.get(conversation_id, [])
if not messages:
messages.append({"role": "system", "content": base_prompt})
# Add user message
messages.append({"role": "user", "content": user_message})
# Get completion from Groq
completion = client.chat.completions.create(
model=MODEL,
messages=messages,
temperature=0.1,
max_tokens=1024
)
# Add assistant's response to history
assistant_message = completion.choices[0].message.content.strip()
messages.append({"role": "assistant", "content": assistant_message})
# Update conversation history
if conversation_id:
conversations[conversation_id] = messages
return assistant_message
except Exception as e:
print(f"Error in chat_with_groq: {str(e)}")
return f"I apologize, but I'm having trouble responding right now. Error: {str(e)}"
def text_to_speech(text):
try:
tts = gTTS(text=text, lang='en')
audio_io = io.BytesIO()
tts.write_to_fp(audio_io)
audio_io.seek(0)
return audio_io
except Exception as e:
print(f"Error in text_to_speech: {str(e)}")
return None
def speech_to_text(audio_file):
try:
# Save the uploaded audio to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
audio_file.save(temp_audio.name)
# Use SpeechRecognition to convert speech to text
with sr.AudioFile(temp_audio.name) as source:
# Adjust recognition settings
recognizer.dynamic_energy_threshold = True
recognizer.energy_threshold = 4000
# Record the entire audio file
audio = recognizer.record(source)
# Perform recognition with increased timeout
text = recognizer.recognize_google(audio, language='en-US')
return text
except sr.UnknownValueError:
return "Could not understand audio"
except sr.RequestError as e:
return f"Could not request results; {str(e)}"
except Exception as e:
print(f"Error in speech_to_text: {str(e)}")
return None
finally:
# Clean up temporary file
try:
os.unlink(temp_audio.name)
except:
pass
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/chat', methods=['POST'])
def chat():
try:
data = request.get_json()
user_message = data.get('message', '')
conversation_id = data.get('conversation_id', str(uuid.uuid4()))
if not user_message:
return jsonify({'error': 'No message provided'}), 400
# Get response from Groq
response = chat_with_groq(user_message, conversation_id)
# Generate voice response
audio_io = text_to_speech(response)
result = {
'response': response,
'conversation_id': conversation_id
}
if audio_io:
audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
result['voice_response'] = audio_base64
return jsonify(result)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/api/voice', methods=['POST'])
def handle_voice():
try:
if 'audio' not in request.files:
return jsonify({'error': 'No audio file provided'}), 400
audio_file = request.files['audio']
conversation_id = request.form.get('conversation_id', str(uuid.uuid4()))
# Process audio
audio_processor = AudioProcessor()
wav_path = audio_processor.process_audio(audio_file)
# Perform speech recognition
recognizer = sr.Recognizer()
with sr.AudioFile(wav_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
if not text:
return jsonify({'error': 'Could not transcribe audio'}), 400
# Get chatbot response
response = chat_with_groq(text, conversation_id)
# Generate voice response
audio_io = text_to_speech(response)
result = {
'text': text,
'response': response,
'conversation_id': conversation_id
}
if audio_io:
audio_base64 = base64.b64encode(audio_io.getvalue()).decode('utf-8')
result['voice_response'] = audio_base64
return jsonify(result)
except Exception as e:
print(f"Error in handle_voice: {str(e)}")
return jsonify({'error': str(e)}), 400
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)