File size: 7,031 Bytes
916d940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12bac1c
916d940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8396003
916d940
 
 
 
 
 
 
 
 
8396003
916d940
 
 
 
 
 
 
 
77fb036
916d940
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import whisper
model = whisper.load_model("base")
model.device

import gradio as gr 

from keybert import KeyBERT
import random as r
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch

model_id = 'prompthero/midjourney-v4-diffusion' #"stabilityai/stable-diffusion-2"

# Use the Euler scheduler here instead
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id , torch_dtype=torch.float16) #pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to("cuda")

# from IPython.display import Image
from PIL import Image
import time
import matplotlib.pyplot as plt
import numpy as np
import PIL

# import cv2

def transcribe(audio,prompt_num,user_keywords):
    
    # load audio and pad/trim it to fit 30 seconds
    audio1 = whisper.load_audio(audio)
    audio1 = whisper.pad_or_trim(audio1)

    # make log-Mel spectrogram and move to the same device as the model
    mel = whisper.log_mel_spectrogram(audio1).to(model.device)

    # detect the spoken language
    _, probs = model.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")

    # decode the audio
    options = whisper.DecodingOptions()
    result = whisper.decode(model, mel, options)
    print(result.text)

    # model = whisper.load_model("base")
    audio2 = whisper.load_audio(audio)
    final_result = model.transcribe(audio2)
    print(final_result["text"])
    return final_result["text"],int(prompt_num),user_keywords



def keywords(text,prompt_num,user_keywords):

    # ub = UrlBuilder("demo.imgix.net")

    kw_model = KeyBERT()
    a = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words=None)
    set_1 = [i[0] for i in a]
    b = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
                                use_maxsum=True, nr_candidates=20, top_n=5)
    set_2 = [i[0] for i in b]
    c = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
                                use_mmr=True, diversity=0.7)
    set_3 = [i[0] for i in c]
    d = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english',
                                use_mmr=True, diversity=0.2)
    set_4 = [i[0] for i in d]
    keyword_pool = set_1 + set_2 + set_3 + set_4
    print("keywords: ", keyword_pool, "length: ", len(keyword_pool))

    generated_prompts = []

    count = 0

    while count != int(prompt_num):

        sentence = []

        style_prompts = ["perfect shading, soft studio lighting, ultra-realistic, photorealistic, octane render, cinematic lighting, hdr, in-frame, 4k, 8k, edge lighting", "detailed, colourful, psychedelic, unreal engine, octane render, blender effect", "mechanical features, cybernetic eyes, baroque, rococo, anodized titanium highly detailed mechanisms, gears, fiber, cogs, bulbs, wires, cables, 70mm, Canon EOS 6D Mark II, 4k, 35mm (FX, Full-Frame), f/2.5, extremely detailed, very high details, photorealistic, hi res, hdr, UHD, hyper-detailed, ultra-realistic, vibrant, centered, vivid colors, Wide angle, zoom out",  "detailed, soft ambiance, japanese influence, unreal engine 5, octane render", "perfect shading, soft studio lighting, ultra-realistic, photorealistic, octane render, cinematic lighting, hdr, in-frame, 4k, 8k, edge lighting --v 4"]
        
        my_list = user_keywords.split(',')
        print(my_list)

        # for i in range(len(my_list)):
        #   sentence.append(my_list[i])
        
        # numb = 5
        for i in range(len(my_list)):
          # print("keyword_pool",keyword_pool, len(keyword_pool))

          sentence.append("mdjrny-v4 style")
          
          for i in range (len(my_list)):
            sentence.append(my_list[i])

          rand_1 = r.randint(1, 4)

          if rand_1 == 1:
              sentence.append(r.choice(set_1))
              sentence.append(r.choice(set_1))
              sentence.append(r.choice(set_2))
              sentence.append(r.choice(set_3))
              sentence.append(r.choice(set_4))
          elif rand_1 == 2:
              sentence.append(r.choice(set_2))
              sentence.append(r.choice(set_2))
              sentence.append(r.choice(set_1))
              sentence.append(r.choice(set_3))
              sentence.append(r.choice(set_4))
          elif rand_1 == 3:
              sentence.append(r.choice(set_3))
              sentence.append(r.choice(set_3))
              sentence.append(r.choice(set_1))
              sentence.append(r.choice(set_2))
              sentence.append(r.choice(set_4))
          else:
              sentence.append(r.choice(set_4))
              sentence.append(r.choice(set_4))
              sentence.append(r.choice(set_1))
              sentence.append(r.choice(set_2))
              sentence.append(r.choice(set_3))

          # Add Style Tail Prompt
          sentence.append(r.choice(style_prompts))

          print("sentence: ", sentence)

          # Formatting Data as comma-delimited for Mid Journey
          myprompt = ', '.join(str(e) for e in sentence)
          sentence = []
          print("prompt: ",myprompt)
          generated_prompts.append(myprompt)

          count += 1

    print("no. of prompts: ", len(generated_prompts))
    print("generated prompts: ", generated_prompts)

    count = 0
    images = []
    # np_images = []
    while count != int(len(generated_prompts)):

      for i in generated_prompts:
        count += 1
        print(i)
        image = pipe(i, height=768, width=768, guidance_scale = 10).images[0]
        # image.save("/content/drive/MyDrive/ColabNotebooks/GeneratedImages/" + "sd_image_" +str(count)+ ".png")
        images.append(image)
    
     
    # pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
    min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1]
    imgs_comb = np.hstack([i.resize(min_shape) for i in images])

    # save that beautiful picture
    imgs_comb = Image.fromarray( imgs_comb)
    # imgs_comb.save("/content/drive/MyDrive/ColabNotebooks/GeneratedImages/" + "Combined.png") 


    # return imgs_comb #for combined image
    return images

speech_text = gr.Interface(fn=transcribe, inputs=[gr.Audio(source="microphone", type="filepath"),gr.Number(placeholder = "Number of Images to be generated (int): "),gr.Textbox(placeholder = "Additional keywords (comma delimitied): ")], outputs=["text","number","text"], title = 'Speech to Image Generator', enable_queue=True)
text_prompts = gr.Interface(fn=keywords, inputs=["text","number","text"], outputs=gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto"), title = 'Speech to Image Generator', enable_queue=True)

gr.Series(speech_text,text_prompts).launch(inline = False, enable_queue=True).queue()