|
<a id="nets.opti.blackbox"></a> |
|
|
|
# :orange[Hyper Paramaters Optimization class] |
|
## nets.opti.blackbox |
|
|
|
<a id="nets.opti.blackbox.Hyper"></a> |
|
|
|
### Hyper Objects |
|
|
|
```python |
|
class Hyper(SCI) |
|
``` |
|
|
|
Hyper parameter tunning class. Allows to generate best NN architecture for task. Inputs are column indexes. idx[-1] is targeted value. |
|
|
|
<a id="nets.opti.blackbox.Hyper.start_study"></a> |
|
|
|
#### start\_study |
|
|
|
```python |
|
def start_study(n_trials: int = 100, |
|
neptune_project: str = None, |
|
neptune_api: str = None) |
|
``` |
|
|
|
Starts study. Optionally provide your neptune repo and token for report generation. |
|
|
|
**Arguments**: |
|
|
|
- `n_trials` _int, optional_ - Number of iterations. Defaults to 100. |
|
- `neptune_project` _str, optional_ - None |
|
- neptune_api (str, optional):. Defaults to None. |
|
|
|
|
|
**Returns**: |
|
|
|
- `dict` - quick report of results |
|
|
|
|