|
# Table of Contents |
|
|
|
- [Table of Contents](#table-of-contents) |
|
- [main](#main) |
|
- [:orange\[PINN\]](#orangepinn) |
|
- [PINN.pinns](#pinnpinns) |
|
- [PINNd\_p Objects](#pinnd_p-objects) |
|
- [PINNhd\_ma Objects](#pinnhd_ma-objects) |
|
- [PINNT\_ma Objects](#pinnt_ma-objects) |
|
- [:orange\[utils\]](#orangeutils) |
|
- [utils.test](#utilstest) |
|
- [utils.dataset\_loader](#utilsdataset_loader) |
|
- [get\_dataset](#get_dataset) |
|
- [utils.ndgan](#utilsndgan) |
|
- [DCGAN Objects](#dcgan-objects) |
|
- [define\_discriminator](#define_discriminator) |
|
- [generate\_latent\_points](#generate_latent_points) |
|
- [define\_gan](#define_gan) |
|
- [summarize\_performance](#summarize_performance) |
|
- [train\_gan](#train_gan) |
|
- [utils.data\_augmentation](#utilsdata_augmentation) |
|
- [dataset Objects](#dataset-objects) |
|
- [\_\_init\_\_](#__init__) |
|
- [:orange\[nets\]](#orangenets) |
|
- [nets.envs](#netsenvs) |
|
- [SCI Objects](#sci-objects) |
|
- [data\_flow](#data_flow) |
|
- [init\_seed](#init_seed) |
|
- [compile](#compile) |
|
- [train](#train) |
|
- [inference](#inference) |
|
- [RCI Objects](#rci-objects) |
|
- [data\_flow](#data_flow-1) |
|
- [compile](#compile-1) |
|
- [nets.dense](#netsdense) |
|
- [Net Objects](#net-objects) |
|
- [\_\_init\_\_](#__init__-1) |
|
- [nets.design](#netsdesign) |
|
- [B\_field\_norm](#b_field_norm) |
|
- [nets.deep\_dense](#netsdeep_dense) |
|
- [dmodel Objects](#dmodel-objects) |
|
- [\_\_init\_\_](#__init__-2) |
|
|
|
<a id="main"></a> |
|
|
|
# main |
|
|
|
<a id="PINN"></a> |
|
|
|
# :orange[PINN] |
|
|
|
<a id="PINN.pinns"></a> |
|
|
|
## PINN.pinns |
|
|
|
<a id="PINN.pinns.PINNd_p"></a> |
|
|
|
## PINNd\_p Objects |
|
|
|
```python |
|
class PINNd_p(nn.Module) |
|
``` |
|
|
|
$d \mapsto P$ |
|
|
|
<a id="PINN.pinns.PINNhd_ma"></a> |
|
|
|
## PINNhd\_ma Objects |
|
|
|
```python |
|
class PINNhd_ma(nn.Module) |
|
``` |
|
|
|
$h,d \mapsto m_a $ |
|
|
|
<a id="PINN.pinns.PINNT_ma"></a> |
|
|
|
## PINNT\_ma Objects |
|
|
|
```python |
|
class PINNT_ma(nn.Module) |
|
``` |
|
|
|
$ m_a, U \mapsto T$ |
|
|
|
<a id="utils"></a> |
|
|
|
--- |
|
# :orange[utils] |
|
|
|
<a id="utils.test"></a> |
|
|
|
## utils.test |
|
|
|
<a id="utils.dataset_loader"></a> |
|
|
|
## utils.dataset\_loader |
|
|
|
<a id="utils.dataset_loader.get_dataset"></a> |
|
|
|
#### get\_dataset |
|
|
|
```python |
|
def get_dataset(raw: bool = False, |
|
sample_size: int = 1000, |
|
name: str = 'dataset.pkl', |
|
source: str = 'dataset.csv', |
|
boundary_conditions: list = None) -> _pickle |
|
``` |
|
|
|
Gets augmented dataset |
|
|
|
**Arguments**: |
|
|
|
- `raw` _bool, optional_ - either to use source data or augmented. Defaults to False. |
|
- `sample_size` _int, optional_ - sample size. Defaults to 1000. |
|
- `name` _str, optional_ - name of wanted dataset. Defaults to 'dataset.pkl'. |
|
- `boundary_conditions` _list,optional_ - y1,y2,x1,x2. |
|
|
|
**Returns**: |
|
|
|
- `_pickle` - pickle buffer |
|
|
|
<a id="utils.ndgan"></a> |
|
|
|
## utils.ndgan |
|
|
|
<a id="utils.ndgan.DCGAN"></a> |
|
|
|
### DCGAN Objects |
|
|
|
```python |
|
class DCGAN() |
|
``` |
|
|
|
<a id="utils.ndgan.DCGAN.define_discriminator"></a> |
|
|
|
#### define\_discriminator |
|
|
|
```python |
|
def define_discriminator(inputs=8) |
|
``` |
|
|
|
function to return the compiled discriminator model |
|
|
|
<a id="utils.ndgan.DCGAN.generate_latent_points"></a> |
|
|
|
#### generate\_latent\_points |
|
|
|
```python |
|
def generate_latent_points(latent_dim, n) |
|
``` |
|
|
|
generate points in latent space as input for the generator |
|
|
|
<a id="utils.ndgan.DCGAN.define_gan"></a> |
|
|
|
#### define\_gan |
|
|
|
```python |
|
def define_gan(generator, discriminator) |
|
``` |
|
|
|
define the combined generator and discriminator model |
|
|
|
<a id="utils.ndgan.DCGAN.summarize_performance"></a> |
|
|
|
#### summarize\_performance |
|
|
|
```python |
|
def summarize_performance(epoch, generator, discriminator, latent_dim, n=200) |
|
``` |
|
|
|
evaluate the discriminator and plot real and fake samples |
|
|
|
<a id="utils.ndgan.DCGAN.train_gan"></a> |
|
|
|
#### train\_gan |
|
|
|
```python |
|
def train_gan(g_model, |
|
d_model, |
|
gan_model, |
|
latent_dim, |
|
num_epochs=2500, |
|
num_eval=2500, |
|
batch_size=2) |
|
``` |
|
|
|
function to train gan model |
|
|
|
<a id="utils.data_augmentation"></a> |
|
|
|
## utils.data\_augmentation |
|
|
|
<a id="utils.data_augmentation.dataset"></a> |
|
|
|
## dataset Objects |
|
|
|
```python |
|
class dataset() |
|
``` |
|
|
|
Creates dataset from input source |
|
|
|
<a id="utils.data_augmentation.dataset.__init__"></a> |
|
|
|
#### \_\_init\_\_ |
|
|
|
```python |
|
def __init__(number_samples: int, |
|
name: str, |
|
source: str, |
|
boundary_conditions: list = None) |
|
``` |
|
|
|
_summary_ |
|
|
|
**Arguments**: |
|
|
|
- `number_samples` _int_ - _description_ |
|
- `name` _str_ - _description_ |
|
- `source` _str_ - _description_ |
|
- `boundary_conditions` _list_ - y1,y2,x1,x2 |
|
|
|
<a id="nets"></a> |
|
|
|
# :orange[nets] |
|
|
|
<a id="nets.envs"></a> |
|
|
|
## nets.envs |
|
|
|
<a id="nets.envs.SCI"></a> |
|
|
|
### SCI Objects |
|
|
|
```python |
|
class SCI() |
|
``` |
|
|
|
<a id="nets.envs.SCI.data_flow"></a> |
|
|
|
#### data\_flow |
|
|
|
```python |
|
def data_flow(columns_idx: tuple = (1, 3, 3, 5), |
|
idx: tuple = None, |
|
split_idx: int = 800) -> torch.utils.data.DataLoader |
|
``` |
|
|
|
Data prep pipeline |
|
|
|
**Arguments**: |
|
|
|
- `columns_idx` _tuple, optional_ - Columns to be selected (sliced 1:2 3:4) for feature fitting. Defaults to (1,3,3,5). |
|
- `idx` _tuple, optional_ - 2|3 indexes to be selected for feature fitting. Defaults to None. Use either idx or columns_idx (for F:R->R idx, for F:R->R2 columns_idx) |
|
split_idx (int) : Index to split for training |
|
|
|
|
|
**Returns**: |
|
|
|
- `torch.utils.data.DataLoader` - Torch native dataloader |
|
|
|
<a id="nets.envs.SCI.init_seed"></a> |
|
|
|
#### init\_seed |
|
|
|
```python |
|
def init_seed(seed) |
|
``` |
|
|
|
Initializes seed for torch optional() |
|
|
|
<a id="nets.envs.SCI.compile"></a> |
|
|
|
#### compile |
|
|
|
```python |
|
def compile(columns: tuple = None, |
|
idx: tuple = None, |
|
optim: torch.optim = torch.optim.AdamW, |
|
loss: nn = nn.L1Loss, |
|
model: nn.Module = dmodel, |
|
custom: bool = False) -> None |
|
``` |
|
|
|
Builds model, loss, optimizer. Has defaults |
|
|
|
**Arguments**: |
|
|
|
- `columns` _tuple, optional_ - Columns to be selected for feature fitting. Defaults to (1,3,3,5). |
|
optim - torch Optimizer |
|
loss - torch Loss function (nn) |
|
|
|
<a id="nets.envs.SCI.train"></a> |
|
|
|
#### train |
|
|
|
```python |
|
def train(epochs: int = 10) -> None |
|
``` |
|
|
|
Train model |
|
If sklearn instance uses .fit() |
|
|
|
<a id="nets.envs.SCI.inference"></a> |
|
|
|
#### inference |
|
|
|
```python |
|
def inference(X: tensor, model_name: str = None) -> np.ndarray |
|
``` |
|
|
|
Inference of (pre-)trained model |
|
|
|
**Arguments**: |
|
|
|
- `X` _tensor_ - your data in domain of train |
|
|
|
|
|
**Returns**: |
|
|
|
- `np.ndarray` - predictions |
|
|
|
<a id="nets.envs.RCI"></a> |
|
|
|
### RCI Objects |
|
|
|
```python |
|
class RCI(SCI) |
|
``` |
|
|
|
<a id="nets.envs.RCI.data_flow"></a> |
|
|
|
#### data\_flow |
|
|
|
```python |
|
def data_flow(columns_idx: tuple = (1, 3, 3, 5), |
|
idx: tuple = None, |
|
split_idx: int = 800) -> torch.utils.data.DataLoader |
|
``` |
|
|
|
Data prep pipeline |
|
|
|
**Arguments**: |
|
|
|
- `columns_idx` _tuple, optional_ - Columns to be selected (sliced 1:2 3:4) for feature fitting. Defaults to (1,3,3,5). |
|
- `idx` _tuple, optional_ - 2|3 indexes to be selected for feature fitting. Defaults to None. Use either idx or columns_idx (for F:R->R idx, for F:R->R2 columns_idx) |
|
split_idx (int) : Index to split for training |
|
|
|
|
|
**Returns**: |
|
|
|
- `torch.utils.data.DataLoader` - Torch native dataloader |
|
|
|
<a id="nets.envs.RCI.compile"></a> |
|
|
|
#### compile |
|
|
|
```python |
|
def compile(columns: tuple = None, |
|
idx: tuple = (3, 1), |
|
optim: torch.optim = torch.optim.AdamW, |
|
loss: nn = nn.L1Loss, |
|
model: nn.Module = PINNd_p, |
|
lr: float = 0.001) -> None |
|
``` |
|
|
|
Builds model, loss, optimizer. Has defaults |
|
|
|
**Arguments**: |
|
|
|
- `columns` _tuple, optional_ - Columns to be selected for feature fitting. Defaults to None. |
|
- `idx` _tuple, optional_ - indexes to be selected Default (3,1) |
|
optim - torch Optimizer |
|
loss - torch Loss function (nn) |
|
|
|
<a id="nets.dense"></a> |
|
|
|
## nets.dense |
|
|
|
<a id="nets.dense.Net"></a> |
|
|
|
### Net Objects |
|
|
|
```python |
|
class Net(nn.Module) |
|
``` |
|
|
|
4 layer model, different activations and neurons count on layer |
|
|
|
<a id="nets.dense.Net.__init__"></a> |
|
|
|
#### \_\_init\_\_ |
|
|
|
```python |
|
def __init__(input_dim: int = 2, hidden_dim: int = 200) |
|
``` |
|
|
|
Init |
|
|
|
**Arguments**: |
|
|
|
- `input_dim` _int, optional_ - Defaults to 2. |
|
- `hidden_dim` _int, optional_ - Defaults to 200. |
|
|
|
<a id="nets.design"></a> |
|
|
|
## nets.design |
|
|
|
<a id="nets.design.B_field_norm"></a> |
|
|
|
#### B\_field\_norm |
|
|
|
```python |
|
def B_field_norm(Bmax, L, k=16, plot=True) |
|
``` |
|
|
|
Returns vec B_z |
|
|
|
**Arguments**: |
|
|
|
- `Bmax` _any_ - maximum B in thruster |
|
k - magnetic field profile number |
|
|
|
<a id="nets.deep_dense"></a> |
|
|
|
## nets.deep\_dense |
|
|
|
<a id="nets.deep_dense.dmodel"></a> |
|
|
|
### dmodel Objects |
|
|
|
```python |
|
class dmodel(nn.Module) |
|
``` |
|
|
|
4 layers Torch model. Relu activations, hidden layers are same size. |
|
|
|
<a id="nets.deep_dense.dmodel.__init__"></a> |
|
|
|
#### \_\_init\_\_ |
|
|
|
```python |
|
def __init__(in_features=1, hidden_features=200, out_features=1) |
|
``` |
|
|
|
Init |
|
|
|
**Arguments**: |
|
|
|
- `in_features` _int, optional_ - Input features. Defaults to 1. |
|
- `hidden_features` _int, optional_ - Hidden dims. Defaults to 200. |
|
- `out_features` _int, optional_ - Output dims. Defaults to 1. |
|
|
|
|