ar08's picture
Upload 1040 files
246d201 verified
import asyncio
import json
import os
import pandas as pd
import requests
from evaluation.benchmarks.gorilla.utils import encode_question, get_data_for_hub
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance_id = instance['question_id']
question = instance['question']
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Prepare instruction
instruction = encode_question(question, instance['hub'])
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
# Here's how you can run the agent (similar to the `main` function) and get the final task state
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# retrieve the last message from the agent
last_agent_message = state.get_last_agent_message()
model_answer_raw = last_agent_message.content if last_agent_message else ''
# attempt to parse model_answer
ast_eval_fn = instance['ast_eval']
correct, hallucination = ast_eval_fn(instance_id, model_answer_raw)
metrics = state.metrics.get() if state.metrics else None
logger.info(
f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}'
)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
output = EvalOutput(
instance_id=instance_id,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'text': model_answer_raw,
'correct': correct,
'hallucination': hallucination,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--hubs',
type=str,
help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.',
default='hf,torch,tf',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
hubs = args.hubs.split(',')
if len(hubs) == 0:
raise ValueError('Please choose at least one from hf, torch, and tf for hubs.')
dfs = []
for hub in hubs:
logger.info(f'Evaluating APIBench {hub} test')
df = get_data_for_hub(hub)
dfs.append(df)
dataset_df = pd.concat(dfs)
dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True)
metadata = make_metadata(
llm_config=llm_config,
dataset_name=f'gorilla-{hub}',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset = prepare_dataset(
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
)
file_path = os.path.join(os.path.dirname(__file__), 'my-languages.so')
# Check if the file exists
if not os.path.exists(file_path):
url = 'https://raw.githubusercontent.com/ShishirPatil/gorilla/main/eval/eval-scripts/codebleu/parser/my-languages.so'
response = requests.get(url)
with open(file_path, 'wb') as f:
f.write(response.content)
else:
print('File already exists, skipping download.')
run_evaluation(
dataset=dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)
# Read the output file and calculate the accuracy
total_correct = 0
total_hallucination = 0
output = []
with open(output_file, 'r') as f:
for line in f:
data = json.loads(line)
if data['test_result']['correct']:
total_correct += 1
if data['test_result']['hallucination']:
total_hallucination += 1
output.append(data)
logger.info(
f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}'
)