File size: 1,962 Bytes
33d6f68
 
 
 
 
 
 
 
 
 
b88e2df
33d6f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config
from rotary_embedding_torch import RotaryEmbedding
import gradio as gr
import spaces
# Define the max length used during training
max_length = 8192

# Load the model and tokenizer from Hugging Face Hub
model_name = "archit11/gpt2-long-finetuned"
config = GPT2Config.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

# Add rotary embeddings
rotary_emb = RotaryEmbedding(
    dim=32,
    interpolate_factor=4.0,
)
for layer in model.transformer.h:
    layer.attn.rotary_emb = rotary_emb

# Set the model to evaluation mode
model.eval()

# Define the inference function
@spaces.GPU(duration=120)
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    
    # Generate text
    with torch.no_grad():
        output = model.generate(
            input_ids,
            max_length=max_length,
            temperature=temperature,
            top_p=top_p,
            num_return_sequences=1,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    return generated_text

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(lines=5, label="Prompt"),
        gr.Slider(minimum=10, maximum=1000, value=100, step=10, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p")
    ],
    outputs=gr.Textbox(lines=10, label="Generated Text"),
    title="Custom GPT-2 Text Generation",
    description="Enter a prompt to generate text using the custom-trained GPT-2 model."
)

# Launch the interface
iface.launch()