Spaces:
Running
Running
import requests | |
import aiohttp | |
import asyncio | |
import logging | |
import os | |
import sys | |
import time | |
from typing import List, Dict, Any | |
from contextlib import asynccontextmanager | |
from langchain_core.documents import Document | |
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL | |
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["RAG"]) | |
class MistralLoader: | |
""" | |
Enhanced Mistral OCR loader with both sync and async support. | |
Loads documents by processing them through the Mistral OCR API. | |
Performance Optimizations: | |
- Differentiated timeouts for different operations | |
- Intelligent retry logic with exponential backoff | |
- Memory-efficient file streaming for large files | |
- Connection pooling and keepalive optimization | |
- Semaphore-based concurrency control for batch processing | |
- Enhanced error handling with retryable error classification | |
""" | |
BASE_API_URL = "https://api.mistral.ai/v1" | |
def __init__( | |
self, | |
api_key: str, | |
file_path: str, | |
timeout: int = 300, # 5 minutes default | |
max_retries: int = 3, | |
enable_debug_logging: bool = False, | |
): | |
""" | |
Initializes the loader with enhanced features. | |
Args: | |
api_key: Your Mistral API key. | |
file_path: The local path to the PDF file to process. | |
timeout: Request timeout in seconds. | |
max_retries: Maximum number of retry attempts. | |
enable_debug_logging: Enable detailed debug logs. | |
""" | |
if not api_key: | |
raise ValueError("API key cannot be empty.") | |
if not os.path.exists(file_path): | |
raise FileNotFoundError(f"File not found at {file_path}") | |
self.api_key = api_key | |
self.file_path = file_path | |
self.timeout = timeout | |
self.max_retries = max_retries | |
self.debug = enable_debug_logging | |
# PERFORMANCE OPTIMIZATION: Differentiated timeouts for different operations | |
# This prevents long-running OCR operations from affecting quick operations | |
# and improves user experience by failing fast on operations that should be quick | |
self.upload_timeout = min( | |
timeout, 120 | |
) # Cap upload at 2 minutes - prevents hanging on large files | |
self.url_timeout = ( | |
30 # URL requests should be fast - fail quickly if API is slow | |
) | |
self.ocr_timeout = ( | |
timeout # OCR can take the full timeout - this is the heavy operation | |
) | |
self.cleanup_timeout = ( | |
30 # Cleanup should be quick - don't hang on file deletion | |
) | |
# PERFORMANCE OPTIMIZATION: Pre-compute file info to avoid repeated filesystem calls | |
# This avoids multiple os.path.basename() and os.path.getsize() calls during processing | |
self.file_name = os.path.basename(file_path) | |
self.file_size = os.path.getsize(file_path) | |
# ENHANCEMENT: Added User-Agent for better API tracking and debugging | |
self.headers = { | |
"Authorization": f"Bearer {self.api_key}", | |
"User-Agent": "OpenWebUI-MistralLoader/2.0", # Helps API provider track usage | |
} | |
def _debug_log(self, message: str, *args) -> None: | |
""" | |
PERFORMANCE OPTIMIZATION: Conditional debug logging for performance. | |
Only processes debug messages when debug mode is enabled, avoiding | |
string formatting overhead in production environments. | |
""" | |
if self.debug: | |
log.debug(message, *args) | |
def _handle_response(self, response: requests.Response) -> Dict[str, Any]: | |
"""Checks response status and returns JSON content.""" | |
try: | |
response.raise_for_status() # Raises HTTPError for bad responses (4xx or 5xx) | |
# Handle potential empty responses for certain successful requests (e.g., DELETE) | |
if response.status_code == 204 or not response.content: | |
return {} # Return empty dict if no content | |
return response.json() | |
except requests.exceptions.HTTPError as http_err: | |
log.error(f"HTTP error occurred: {http_err} - Response: {response.text}") | |
raise | |
except requests.exceptions.RequestException as req_err: | |
log.error(f"Request exception occurred: {req_err}") | |
raise | |
except ValueError as json_err: # Includes JSONDecodeError | |
log.error(f"JSON decode error: {json_err} - Response: {response.text}") | |
raise # Re-raise after logging | |
async def _handle_response_async( | |
self, response: aiohttp.ClientResponse | |
) -> Dict[str, Any]: | |
"""Async version of response handling with better error info.""" | |
try: | |
response.raise_for_status() | |
# Check content type | |
content_type = response.headers.get("content-type", "") | |
if "application/json" not in content_type: | |
if response.status == 204: | |
return {} | |
text = await response.text() | |
raise ValueError( | |
f"Unexpected content type: {content_type}, body: {text[:200]}..." | |
) | |
return await response.json() | |
except aiohttp.ClientResponseError as e: | |
error_text = await response.text() if response else "No response" | |
log.error(f"HTTP {e.status}: {e.message} - Response: {error_text[:500]}") | |
raise | |
except aiohttp.ClientError as e: | |
log.error(f"Client error: {e}") | |
raise | |
except Exception as e: | |
log.error(f"Unexpected error processing response: {e}") | |
raise | |
def _is_retryable_error(self, error: Exception) -> bool: | |
""" | |
ENHANCEMENT: Intelligent error classification for retry logic. | |
Determines if an error is retryable based on its type and status code. | |
This prevents wasting time retrying errors that will never succeed | |
(like authentication errors) while ensuring transient errors are retried. | |
Retryable errors: | |
- Network connection errors (temporary network issues) | |
- Timeouts (server might be temporarily overloaded) | |
- Server errors (5xx status codes - server-side issues) | |
- Rate limiting (429 status - temporary throttling) | |
Non-retryable errors: | |
- Authentication errors (401, 403 - won't fix with retry) | |
- Bad request errors (400 - malformed request) | |
- Not found errors (404 - resource doesn't exist) | |
""" | |
if isinstance(error, requests.exceptions.ConnectionError): | |
return True # Network issues are usually temporary | |
if isinstance(error, requests.exceptions.Timeout): | |
return True # Timeouts might resolve on retry | |
if isinstance(error, requests.exceptions.HTTPError): | |
# Only retry on server errors (5xx) or rate limits (429) | |
if hasattr(error, "response") and error.response is not None: | |
status_code = error.response.status_code | |
return status_code >= 500 or status_code == 429 | |
return False | |
if isinstance( | |
error, (aiohttp.ClientConnectionError, aiohttp.ServerTimeoutError) | |
): | |
return True # Async network/timeout errors are retryable | |
if isinstance(error, aiohttp.ClientResponseError): | |
return error.status >= 500 or error.status == 429 | |
return False # All other errors are non-retryable | |
def _retry_request_sync(self, request_func, *args, **kwargs): | |
""" | |
ENHANCEMENT: Synchronous retry logic with intelligent error classification. | |
Uses exponential backoff with jitter to avoid thundering herd problems. | |
The wait time increases exponentially but is capped at 30 seconds to | |
prevent excessive delays. Only retries errors that are likely to succeed | |
on subsequent attempts. | |
""" | |
for attempt in range(self.max_retries): | |
try: | |
return request_func(*args, **kwargs) | |
except Exception as e: | |
if attempt == self.max_retries - 1 or not self._is_retryable_error(e): | |
raise | |
# PERFORMANCE OPTIMIZATION: Exponential backoff with cap | |
# Prevents overwhelming the server while ensuring reasonable retry delays | |
wait_time = min((2**attempt) + 0.5, 30) # Cap at 30 seconds | |
log.warning( | |
f"Retryable error (attempt {attempt + 1}/{self.max_retries}): {e}. " | |
f"Retrying in {wait_time}s..." | |
) | |
time.sleep(wait_time) | |
async def _retry_request_async(self, request_func, *args, **kwargs): | |
""" | |
ENHANCEMENT: Async retry logic with intelligent error classification. | |
Async version of retry logic that doesn't block the event loop during | |
wait periods. Uses the same exponential backoff strategy as sync version. | |
""" | |
for attempt in range(self.max_retries): | |
try: | |
return await request_func(*args, **kwargs) | |
except Exception as e: | |
if attempt == self.max_retries - 1 or not self._is_retryable_error(e): | |
raise | |
# PERFORMANCE OPTIMIZATION: Non-blocking exponential backoff | |
wait_time = min((2**attempt) + 0.5, 30) # Cap at 30 seconds | |
log.warning( | |
f"Retryable error (attempt {attempt + 1}/{self.max_retries}): {e}. " | |
f"Retrying in {wait_time}s..." | |
) | |
await asyncio.sleep(wait_time) # Non-blocking wait | |
def _upload_file(self) -> str: | |
""" | |
PERFORMANCE OPTIMIZATION: Enhanced file upload with streaming consideration. | |
Uploads the file to Mistral for OCR processing (sync version). | |
Uses context manager for file handling to ensure proper resource cleanup. | |
Although streaming is not enabled for this endpoint, the file is opened | |
in a context manager to minimize memory usage duration. | |
""" | |
log.info("Uploading file to Mistral API") | |
url = f"{self.BASE_API_URL}/files" | |
def upload_request(): | |
# MEMORY OPTIMIZATION: Use context manager to minimize file handle lifetime | |
# This ensures the file is closed immediately after reading, reducing memory usage | |
with open(self.file_path, "rb") as f: | |
files = {"file": (self.file_name, f, "application/pdf")} | |
data = {"purpose": "ocr"} | |
# NOTE: stream=False is required for this endpoint | |
# The Mistral API doesn't support chunked uploads for this endpoint | |
response = requests.post( | |
url, | |
headers=self.headers, | |
files=files, | |
data=data, | |
timeout=self.upload_timeout, # Use specialized upload timeout | |
stream=False, # Keep as False for this endpoint | |
) | |
return self._handle_response(response) | |
try: | |
response_data = self._retry_request_sync(upload_request) | |
file_id = response_data.get("id") | |
if not file_id: | |
raise ValueError("File ID not found in upload response.") | |
log.info(f"File uploaded successfully. File ID: {file_id}") | |
return file_id | |
except Exception as e: | |
log.error(f"Failed to upload file: {e}") | |
raise | |
async def _upload_file_async(self, session: aiohttp.ClientSession) -> str: | |
"""Async file upload with streaming for better memory efficiency.""" | |
url = f"{self.BASE_API_URL}/files" | |
async def upload_request(): | |
# Create multipart writer for streaming upload | |
writer = aiohttp.MultipartWriter("form-data") | |
# Add purpose field | |
purpose_part = writer.append("ocr") | |
purpose_part.set_content_disposition("form-data", name="purpose") | |
# Add file part with streaming | |
file_part = writer.append_payload( | |
aiohttp.streams.FilePayload( | |
self.file_path, | |
filename=self.file_name, | |
content_type="application/pdf", | |
) | |
) | |
file_part.set_content_disposition( | |
"form-data", name="file", filename=self.file_name | |
) | |
self._debug_log( | |
f"Uploading file: {self.file_name} ({self.file_size:,} bytes)" | |
) | |
async with session.post( | |
url, | |
data=writer, | |
headers=self.headers, | |
timeout=aiohttp.ClientTimeout(total=self.upload_timeout), | |
) as response: | |
return await self._handle_response_async(response) | |
response_data = await self._retry_request_async(upload_request) | |
file_id = response_data.get("id") | |
if not file_id: | |
raise ValueError("File ID not found in upload response.") | |
log.info(f"File uploaded successfully. File ID: {file_id}") | |
return file_id | |
def _get_signed_url(self, file_id: str) -> str: | |
"""Retrieves a temporary signed URL for the uploaded file (sync version).""" | |
log.info(f"Getting signed URL for file ID: {file_id}") | |
url = f"{self.BASE_API_URL}/files/{file_id}/url" | |
params = {"expiry": 1} | |
signed_url_headers = {**self.headers, "Accept": "application/json"} | |
def url_request(): | |
response = requests.get( | |
url, headers=signed_url_headers, params=params, timeout=self.url_timeout | |
) | |
return self._handle_response(response) | |
try: | |
response_data = self._retry_request_sync(url_request) | |
signed_url = response_data.get("url") | |
if not signed_url: | |
raise ValueError("Signed URL not found in response.") | |
log.info("Signed URL received.") | |
return signed_url | |
except Exception as e: | |
log.error(f"Failed to get signed URL: {e}") | |
raise | |
async def _get_signed_url_async( | |
self, session: aiohttp.ClientSession, file_id: str | |
) -> str: | |
"""Async signed URL retrieval.""" | |
url = f"{self.BASE_API_URL}/files/{file_id}/url" | |
params = {"expiry": 1} | |
headers = {**self.headers, "Accept": "application/json"} | |
async def url_request(): | |
self._debug_log(f"Getting signed URL for file ID: {file_id}") | |
async with session.get( | |
url, | |
headers=headers, | |
params=params, | |
timeout=aiohttp.ClientTimeout(total=self.url_timeout), | |
) as response: | |
return await self._handle_response_async(response) | |
response_data = await self._retry_request_async(url_request) | |
signed_url = response_data.get("url") | |
if not signed_url: | |
raise ValueError("Signed URL not found in response.") | |
self._debug_log("Signed URL received successfully") | |
return signed_url | |
def _process_ocr(self, signed_url: str) -> Dict[str, Any]: | |
"""Sends the signed URL to the OCR endpoint for processing (sync version).""" | |
log.info("Processing OCR via Mistral API") | |
url = f"{self.BASE_API_URL}/ocr" | |
ocr_headers = { | |
**self.headers, | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
} | |
payload = { | |
"model": "mistral-ocr-latest", | |
"document": { | |
"type": "document_url", | |
"document_url": signed_url, | |
}, | |
"include_image_base64": False, | |
} | |
def ocr_request(): | |
response = requests.post( | |
url, headers=ocr_headers, json=payload, timeout=self.ocr_timeout | |
) | |
return self._handle_response(response) | |
try: | |
ocr_response = self._retry_request_sync(ocr_request) | |
log.info("OCR processing done.") | |
self._debug_log("OCR response: %s", ocr_response) | |
return ocr_response | |
except Exception as e: | |
log.error(f"Failed during OCR processing: {e}") | |
raise | |
async def _process_ocr_async( | |
self, session: aiohttp.ClientSession, signed_url: str | |
) -> Dict[str, Any]: | |
"""Async OCR processing with timing metrics.""" | |
url = f"{self.BASE_API_URL}/ocr" | |
headers = { | |
**self.headers, | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
} | |
payload = { | |
"model": "mistral-ocr-latest", | |
"document": { | |
"type": "document_url", | |
"document_url": signed_url, | |
}, | |
"include_image_base64": False, | |
} | |
async def ocr_request(): | |
log.info("Starting OCR processing via Mistral API") | |
start_time = time.time() | |
async with session.post( | |
url, | |
json=payload, | |
headers=headers, | |
timeout=aiohttp.ClientTimeout(total=self.ocr_timeout), | |
) as response: | |
ocr_response = await self._handle_response_async(response) | |
processing_time = time.time() - start_time | |
log.info(f"OCR processing completed in {processing_time:.2f}s") | |
return ocr_response | |
return await self._retry_request_async(ocr_request) | |
def _delete_file(self, file_id: str) -> None: | |
"""Deletes the file from Mistral storage (sync version).""" | |
log.info(f"Deleting uploaded file ID: {file_id}") | |
url = f"{self.BASE_API_URL}/files/{file_id}" | |
try: | |
response = requests.delete( | |
url, headers=self.headers, timeout=self.cleanup_timeout | |
) | |
delete_response = self._handle_response(response) | |
log.info(f"File deleted successfully: {delete_response}") | |
except Exception as e: | |
# Log error but don't necessarily halt execution if deletion fails | |
log.error(f"Failed to delete file ID {file_id}: {e}") | |
async def _delete_file_async( | |
self, session: aiohttp.ClientSession, file_id: str | |
) -> None: | |
"""Async file deletion with error tolerance.""" | |
try: | |
async def delete_request(): | |
self._debug_log(f"Deleting file ID: {file_id}") | |
async with session.delete( | |
url=f"{self.BASE_API_URL}/files/{file_id}", | |
headers=self.headers, | |
timeout=aiohttp.ClientTimeout( | |
total=self.cleanup_timeout | |
), # Shorter timeout for cleanup | |
) as response: | |
return await self._handle_response_async(response) | |
await self._retry_request_async(delete_request) | |
self._debug_log(f"File {file_id} deleted successfully") | |
except Exception as e: | |
# Don't fail the entire process if cleanup fails | |
log.warning(f"Failed to delete file ID {file_id}: {e}") | |
async def _get_session(self): | |
"""Context manager for HTTP session with optimized settings.""" | |
connector = aiohttp.TCPConnector( | |
limit=20, # Increased total connection limit for better throughput | |
limit_per_host=10, # Increased per-host limit for API endpoints | |
ttl_dns_cache=600, # Longer DNS cache TTL (10 minutes) | |
use_dns_cache=True, | |
keepalive_timeout=60, # Increased keepalive for connection reuse | |
enable_cleanup_closed=True, | |
force_close=False, # Allow connection reuse | |
resolver=aiohttp.AsyncResolver(), # Use async DNS resolver | |
) | |
timeout = aiohttp.ClientTimeout( | |
total=self.timeout, | |
connect=30, # Connection timeout | |
sock_read=60, # Socket read timeout | |
) | |
async with aiohttp.ClientSession( | |
connector=connector, | |
timeout=timeout, | |
headers={"User-Agent": "OpenWebUI-MistralLoader/2.0"}, | |
raise_for_status=False, # We handle status codes manually | |
) as session: | |
yield session | |
def _process_results(self, ocr_response: Dict[str, Any]) -> List[Document]: | |
"""Process OCR results into Document objects with enhanced metadata and memory efficiency.""" | |
pages_data = ocr_response.get("pages") | |
if not pages_data: | |
log.warning("No pages found in OCR response.") | |
return [ | |
Document( | |
page_content="No text content found", | |
metadata={"error": "no_pages", "file_name": self.file_name}, | |
) | |
] | |
documents = [] | |
total_pages = len(pages_data) | |
skipped_pages = 0 | |
# Process pages in a memory-efficient way | |
for page_data in pages_data: | |
page_content = page_data.get("markdown") | |
page_index = page_data.get("index") # API uses 0-based index | |
if page_content is None or page_index is None: | |
skipped_pages += 1 | |
self._debug_log( | |
f"Skipping page due to missing 'markdown' or 'index'. Data keys: {list(page_data.keys())}" | |
) | |
continue | |
# Clean up content efficiently with early exit for empty content | |
if isinstance(page_content, str): | |
cleaned_content = page_content.strip() | |
else: | |
cleaned_content = str(page_content).strip() | |
if not cleaned_content: | |
skipped_pages += 1 | |
self._debug_log(f"Skipping empty page {page_index}") | |
continue | |
# Create document with optimized metadata | |
documents.append( | |
Document( | |
page_content=cleaned_content, | |
metadata={ | |
"page": page_index, # 0-based index from API | |
"page_label": page_index + 1, # 1-based label for convenience | |
"total_pages": total_pages, | |
"file_name": self.file_name, | |
"file_size": self.file_size, | |
"processing_engine": "mistral-ocr", | |
"content_length": len(cleaned_content), | |
}, | |
) | |
) | |
if skipped_pages > 0: | |
log.info( | |
f"Processed {len(documents)} pages, skipped {skipped_pages} empty/invalid pages" | |
) | |
if not documents: | |
# Case where pages existed but none had valid markdown/index | |
log.warning( | |
"OCR response contained pages, but none had valid content/index." | |
) | |
return [ | |
Document( | |
page_content="No valid text content found in document", | |
metadata={ | |
"error": "no_valid_pages", | |
"total_pages": total_pages, | |
"file_name": self.file_name, | |
}, | |
) | |
] | |
return documents | |
def load(self) -> List[Document]: | |
""" | |
Executes the full OCR workflow: upload, get URL, process OCR, delete file. | |
Synchronous version for backward compatibility. | |
Returns: | |
A list of Document objects, one for each page processed. | |
""" | |
file_id = None | |
start_time = time.time() | |
try: | |
# 1. Upload file | |
file_id = self._upload_file() | |
# 2. Get Signed URL | |
signed_url = self._get_signed_url(file_id) | |
# 3. Process OCR | |
ocr_response = self._process_ocr(signed_url) | |
# 4. Process results | |
documents = self._process_results(ocr_response) | |
total_time = time.time() - start_time | |
log.info( | |
f"Sync OCR workflow completed in {total_time:.2f}s, produced {len(documents)} documents" | |
) | |
return documents | |
except Exception as e: | |
total_time = time.time() - start_time | |
log.error( | |
f"An error occurred during the loading process after {total_time:.2f}s: {e}" | |
) | |
# Return an error document on failure | |
return [ | |
Document( | |
page_content=f"Error during processing: {e}", | |
metadata={ | |
"error": "processing_failed", | |
"file_name": self.file_name, | |
}, | |
) | |
] | |
finally: | |
# 5. Delete file (attempt even if prior steps failed after upload) | |
if file_id: | |
try: | |
self._delete_file(file_id) | |
except Exception as del_e: | |
# Log deletion error, but don't overwrite original error if one occurred | |
log.error( | |
f"Cleanup error: Could not delete file ID {file_id}. Reason: {del_e}" | |
) | |
async def load_async(self) -> List[Document]: | |
""" | |
Asynchronous OCR workflow execution with optimized performance. | |
Returns: | |
A list of Document objects, one for each page processed. | |
""" | |
file_id = None | |
start_time = time.time() | |
try: | |
async with self._get_session() as session: | |
# 1. Upload file with streaming | |
file_id = await self._upload_file_async(session) | |
# 2. Get signed URL | |
signed_url = await self._get_signed_url_async(session, file_id) | |
# 3. Process OCR | |
ocr_response = await self._process_ocr_async(session, signed_url) | |
# 4. Process results | |
documents = self._process_results(ocr_response) | |
total_time = time.time() - start_time | |
log.info( | |
f"Async OCR workflow completed in {total_time:.2f}s, produced {len(documents)} documents" | |
) | |
return documents | |
except Exception as e: | |
total_time = time.time() - start_time | |
log.error(f"Async OCR workflow failed after {total_time:.2f}s: {e}") | |
return [ | |
Document( | |
page_content=f"Error during OCR processing: {e}", | |
metadata={ | |
"error": "processing_failed", | |
"file_name": self.file_name, | |
}, | |
) | |
] | |
finally: | |
# 5. Cleanup - always attempt file deletion | |
if file_id: | |
try: | |
async with self._get_session() as session: | |
await self._delete_file_async(session, file_id) | |
except Exception as cleanup_error: | |
log.error(f"Cleanup failed for file ID {file_id}: {cleanup_error}") | |
async def load_multiple_async( | |
loaders: List["MistralLoader"], | |
max_concurrent: int = 5, # Limit concurrent requests | |
) -> List[List[Document]]: | |
""" | |
Process multiple files concurrently with controlled concurrency. | |
Args: | |
loaders: List of MistralLoader instances | |
max_concurrent: Maximum number of concurrent requests | |
Returns: | |
List of document lists, one for each loader | |
""" | |
if not loaders: | |
return [] | |
log.info( | |
f"Starting concurrent processing of {len(loaders)} files with max {max_concurrent} concurrent" | |
) | |
start_time = time.time() | |
# Use semaphore to control concurrency | |
semaphore = asyncio.Semaphore(max_concurrent) | |
async def process_with_semaphore(loader: "MistralLoader") -> List[Document]: | |
async with semaphore: | |
return await loader.load_async() | |
# Process all files with controlled concurrency | |
tasks = [process_with_semaphore(loader) for loader in loaders] | |
results = await asyncio.gather(*tasks, return_exceptions=True) | |
# Handle any exceptions in results | |
processed_results = [] | |
for i, result in enumerate(results): | |
if isinstance(result, Exception): | |
log.error(f"File {i} failed: {result}") | |
processed_results.append( | |
[ | |
Document( | |
page_content=f"Error processing file: {result}", | |
metadata={ | |
"error": "batch_processing_failed", | |
"file_index": i, | |
}, | |
) | |
] | |
) | |
else: | |
processed_results.append(result) | |
# MONITORING: Log comprehensive batch processing statistics | |
total_time = time.time() - start_time | |
total_docs = sum(len(docs) for docs in processed_results) | |
success_count = sum( | |
1 for result in results if not isinstance(result, Exception) | |
) | |
failure_count = len(results) - success_count | |
log.info( | |
f"Batch processing completed in {total_time:.2f}s: " | |
f"{success_count} files succeeded, {failure_count} files failed, " | |
f"produced {total_docs} total documents" | |
) | |
return processed_results | |