File size: 19,000 Bytes
7762f99 099e99c 7762f99 2b4b309 7762f99 90e8636 e4b6cc5 19f20a1 6fc91c7 3c2fc33 2b4b309 cd47483 3c2fc33 fb096d2 3c2fc33 099e99c 3c2fc33 cd47483 7762f99 cd47483 9ac3da0 fd936a6 c1b3b74 6fc91c7 cd47483 7314f90 099e99c fb096d2 099e99c 7762f99 5afa3f9 3c2fc33 2b4b309 c1b3b74 3c2fc33 c1b3b74 19f20a1 fb096d2 099e99c fb096d2 099e99c fb096d2 099e99c fb096d2 099e99c fb096d2 099e99c fb096d2 099e99c 0fcd4d1 099e99c fb096d2 099e99c 7762f99 3c2fc33 099e99c 7762f99 fb096d2 099e99c fb096d2 099e99c 3c2fc33 7762f99 099e99c fb096d2 099e99c 7762f99 88a4065 7762f99 099e99c 7762f99 099e99c b4ac9ca 7762f99 099e99c a69bbb8 fb096d2 7314f90 cd47483 fb096d2 cd47483 fb096d2 cd47483 fb096d2 cd47483 fb096d2 a69bbb8 cd47483 fb096d2 cd47483 0fcd4d1 cd47483 fb096d2 cd47483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import ast
import uuid
from typing import Dict, List, Union
import argilla as rg
import gradio as gr
import pandas as pd
from datasets import Dataset
from distilabel.distiset import Distiset
from huggingface_hub import HfApi
from distilabel_dataset_generator.apps.base import (
hide_success_message,
show_success_message,
validate_argilla_user_workspace_dataset,
validate_push_to_hub,
)
from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE, SFT_AVAILABLE
from distilabel_dataset_generator.pipelines.embeddings import (
get_embeddings,
get_sentence_embedding_dimensions,
)
from distilabel_dataset_generator.pipelines.sft import (
DEFAULT_DATASET_DESCRIPTIONS,
generate_pipeline_code,
get_magpie_generator,
get_prompt_generator,
get_response_generator,
)
from distilabel_dataset_generator.utils import (
_LOGGED_OUT_CSS,
get_argilla_client,
get_org_dropdown,
swap_visibility,
)
def convert_dataframe_messages(dataframe: pd.DataFrame) -> pd.DataFrame:
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
return ast.literal_eval(
messages.replace("'user'}", "'user'},")
.replace("'system'}", "'system'},")
.replace("'assistant'}", "'assistant'},")
)
if "messages" in dataframe.columns:
dataframe["messages"] = dataframe["messages"].apply(
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
)
return dataframe
def generate_system_prompt(dataset_description, temperature, progress=gr.Progress()):
progress(0.0, desc="Generating system prompt")
progress(0.3, desc="Initializing text generation")
generate_description = get_prompt_generator(temperature)
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, num_turns, progress=gr.Progress()):
dataframe = generate_dataset(
system_prompt=system_prompt,
num_turns=num_turns,
num_rows=10,
progress=progress,
is_sample=True,
)
return dataframe
def generate_dataset(
system_prompt: str,
num_turns: int = 1,
num_rows: int = 10,
is_sample: bool = False,
progress=gr.Progress(),
) -> pd.DataFrame:
progress(0.0, desc="(1/2) Generating instructions")
magpie_generator = get_magpie_generator(system_prompt, num_turns, is_sample)
response_generator = get_response_generator(system_prompt, num_turns, is_sample)
total_steps: int = num_rows * 2
batch_size = DEFAULT_BATCH_SIZE
# create instructions
n_processed = 0
magpie_results = []
while n_processed < num_rows:
progress(
0.5 * n_processed / num_rows,
total=total_steps,
desc="(1/2) Generating instructions",
)
remaining_rows = num_rows - n_processed
batch_size = min(batch_size, remaining_rows)
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)]
batch = list(magpie_generator.process(inputs=inputs))
magpie_results.extend(batch[0])
n_processed += batch_size
progress(0.5, desc="(1/2) Generating instructions")
# generate responses
n_processed = 0
response_results = []
if num_turns == 1:
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(2/2) Generating responses",
)
batch = magpie_results[n_processed : n_processed + batch_size]
responses = list(response_generator.process(inputs=batch))
response_results.extend(responses[0])
n_processed += batch_size
for result in response_results:
result["prompt"] = result["instruction"]
result["completion"] = result["generation"]
result["system_prompt"] = system_prompt
else:
for result in magpie_results:
result["conversation"].insert(
0, {"role": "system", "content": system_prompt}
)
result["messages"] = result["conversation"]
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(2/2) Generating responses",
)
batch = magpie_results[n_processed : n_processed + batch_size]
responses = list(response_generator.process(inputs=batch))
response_results.extend(responses[0])
n_processed += batch_size
for result in response_results:
result["messages"].append(
{"role": "assistant", "content": result["generation"]}
)
progress(
1,
total=total_steps,
desc="(2/2) Creating dataset",
)
# create distiset
distiset_results = []
for result in response_results:
record = {}
for relevant_keys in [
"messages",
"prompt",
"completion",
"model_name",
"system_prompt",
]:
if relevant_keys in result:
record[relevant_keys] = result[relevant_keys]
distiset_results.append(record)
distiset = Distiset(
{
"default": Dataset.from_list(distiset_results),
}
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]
if num_turns == 1:
outputs = distiset.to_pandas()[["prompt", "completion", "system_prompt"]]
else:
outputs = distiset.to_pandas()[["messages"]]
dataframe = pd.DataFrame(outputs)
progress(1.0, desc="Dataset generation completed")
return dataframe
def push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private):
repo_id = validate_push_to_hub(org_name, repo_name)
original_dataframe = dataframe.copy(deep=True)
dataframe = convert_dataframe_messages(dataframe)
distiset = Distiset({"default": Dataset.from_pandas(dataframe)})
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token.token,
create_pr=False,
)
return original_dataframe
def push_dataset(
org_name: str,
repo_name: str,
system_prompt: str,
num_turns: int = 1,
num_rows: int = 10,
private: bool = False,
oauth_token: Union[gr.OAuthToken, None] = None,
progress=gr.Progress(),
) -> pd.DataFrame:
dataframe = generate_dataset(
system_prompt=system_prompt,
num_turns=num_turns,
num_rows=num_rows,
)
push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private)
try:
progress(0.1, desc="Setting up user and workspace")
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
client = get_argilla_client()
if client is None:
return ""
if "messages" in dataframe.columns:
settings = rg.Settings(
fields=[
rg.ChatField(
name="messages",
description="The messages in the conversation",
title="Messages",
),
],
questions=[
rg.RatingQuestion(
name="rating",
title="Rating",
description="The rating of the conversation",
values=list(range(1, 6)),
),
],
metadata=[
rg.IntegerMetadataProperty(
name="user_message_length", title="User Message Length"
),
rg.IntegerMetadataProperty(
name="assistant_message_length",
title="Assistant Message Length",
),
],
vectors=[
rg.VectorField(
name="messages_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the conversation and provide a score for the assistant's response.",
)
dataframe["user_message_length"] = dataframe["messages"].apply(
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"])
)
dataframe["assistant_message_length"] = dataframe["messages"].apply(
lambda x: sum(
[len(y["content"]) for y in x if y["role"] == "assistant"]
)
)
dataframe["messages_embeddings"] = get_embeddings(
dataframe["messages"].apply(
lambda x: " ".join([y["content"] for y in x])
)
)
else:
settings = rg.Settings(
fields=[
rg.TextField(
name="system_prompt",
title="System Prompt",
description="The system prompt used for the conversation",
required=False,
),
rg.TextField(
name="prompt",
title="Prompt",
description="The prompt used for the conversation",
),
rg.TextField(
name="completion",
title="Completion",
description="The completion from the assistant",
),
],
questions=[
rg.RatingQuestion(
name="rating",
title="Rating",
description="The rating of the conversation",
values=list(range(1, 6)),
),
],
metadata=[
rg.IntegerMetadataProperty(
name="prompt_length", title="Prompt Length"
),
rg.IntegerMetadataProperty(
name="completion_length", title="Completion Length"
),
],
vectors=[
rg.VectorField(
name="prompt_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the conversation and correct the prompt and completion where needed.",
)
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
dataframe["completion_length"] = dataframe["completion"].apply(len)
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
progress(0.5, desc="Creating dataset")
rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
if rg_dataset is None:
rg_dataset = rg.Dataset(
name=repo_name,
workspace=hf_user,
settings=settings,
client=client,
)
rg_dataset = rg_dataset.create()
progress(0.7, desc="Pushing dataset to Argilla")
hf_dataset = Dataset.from_pandas(dataframe)
rg_dataset.records.log(records=hf_dataset)
progress(1.0, desc="Dataset pushed to Argilla")
except Exception as e:
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
return ""
def show_pipeline_code_visibility():
return {pipeline_code_ui: gr.Accordion(visible=True)}
def hide_pipeline_code_visibility():
return {pipeline_code_ui: gr.Accordion(visible=False)}
######################
# Gradio UI
######################
with gr.Blocks(css=_LOGGED_OUT_CSS) as app:
with gr.Column() as main_ui:
if not SFT_AVAILABLE:
gr.Markdown(
value=f"## Supervised Fine-Tuning is not available for the {MODEL} model. Use Hugging Face Llama3 or Qwen2 models."
)
else:
gr.Markdown(value="## 1. Describe the dataset you want")
with gr.Row():
with gr.Column(scale=2):
dataset_description = gr.Textbox(
label="Dataset description",
placeholder="Give a precise description of your desired dataset.",
)
with gr.Accordion("Temperature", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1,
value=0.8,
step=0.1,
interactive=True,
show_label=False,
)
load_btn = gr.Button(
"Create dataset",
variant="primary",
)
with gr.Column(scale=2):
examples = gr.Examples(
examples=DEFAULT_DATASET_DESCRIPTIONS,
inputs=[dataset_description],
cache_examples=False,
label="Examples",
)
with gr.Column(scale=1):
pass
gr.HTML(value="<hr>")
gr.Markdown(value="## 2. Configure your dataset")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
system_prompt = gr.Textbox(
label="System prompt",
placeholder="You are a helpful assistant.",
)
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
interactive=True,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
)
btn_apply_to_sample_dataset = gr.Button(
"Refresh dataset", variant="secondary"
)
with gr.Column(scale=3):
dataframe = gr.Dataframe(
headers=["prompt", "completion"],
wrap=True,
height=500,
interactive=False,
)
gr.HTML(value="<hr>")
gr.Markdown(value="## 3. Generate your dataset")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name",
placeholder="dataset_name",
value=f"my-distiset-{str(uuid.uuid4())[:8]}",
interactive=True,
)
num_rows = gr.Number(
label="Number of rows",
value=10,
interactive=True,
scale=1,
)
private = gr.Checkbox(
label="Private dataset",
value=False,
interactive=True,
scale=1,
)
btn_push_to_hub = gr.Button(
"Push to Hub", variant="primary", scale=2
)
with gr.Column(scale=3):
success_message = gr.Markdown(visible=True)
with gr.Accordion(
"Do you want to go further? Customize and run with Distilabel",
open=False,
visible=False,
) as pipeline_code_ui:
code = generate_pipeline_code(
system_prompt=system_prompt.value,
num_turns=num_turns.value,
num_rows=num_rows.value,
)
pipeline_code = gr.Code(
value=code,
language="python",
label="Distilabel Pipeline Code",
)
load_btn.click(
fn=generate_system_prompt,
inputs=[dataset_description, temperature],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt, num_turns],
outputs=[dataframe],
show_progress=True,
)
btn_apply_to_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt, num_turns],
outputs=[dataframe],
show_progress=True,
)
btn_push_to_hub.click(
fn=validate_argilla_user_workspace_dataset,
inputs=[repo_name],
outputs=[success_message],
show_progress=True,
).then(
fn=validate_push_to_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
show_progress=True,
).success(
fn=hide_success_message,
outputs=[success_message],
show_progress=True,
).success(
fn=hide_pipeline_code_visibility,
inputs=[],
outputs=[pipeline_code_ui],
).success(
fn=push_dataset,
inputs=[
org_name,
repo_name,
system_prompt,
num_turns,
num_rows,
private,
],
outputs=[success_message],
show_progress=True,
).success(
fn=show_success_message,
inputs=[org_name, repo_name],
outputs=[success_message],
).success(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
).success(
fn=show_pipeline_code_visibility,
inputs=[],
outputs=[pipeline_code_ui],
)
app.load(fn=swap_visibility, outputs=main_ui)
app.load(fn=get_org_dropdown, outputs=[org_name])
|