File size: 17,029 Bytes
b2669f7 f04dfa8 fd2f716 cd47483 7b7c1be 3c2fc33 371c76b 71fd9c5 f04dfa8 3e62c9b 67fa2ba 3e62c9b 3e198f4 3e62c9b f04dfa8 b2669f7 099e99c ccd1c40 67fa2ba 5afa3f9 d129960 4af6d10 d129960 4af6d10 d129960 4af6d10 d129960 f04dfa8 c54ccc3 f04dfa8 fd936a6 f04dfa8 fd936a6 3922cde f5ab4cb fb096d2 f5ab4cb fb096d2 fd936a6 fb096d2 fd936a6 c54ccc3 c1b3b74 f5ab4cb d7a6ff4 f5ab4cb cd47483 f5ab4cb c1b3b74 f5ab4cb d7a6ff4 f5ab4cb cd47483 f5ab4cb c1b3b74 9b4773a c1b3b74 b2669f7 c54ccc3 c1b3b74 f5ab4cb c1b3b74 3b7b628 c1b3b74 c973277 f5ab4cb c1b3b74 3b7b628 c1b3b74 f04dfa8 b2669f7 3b7b628 b2669f7 fb096d2 b2669f7 1fc08db b2669f7 fb096d2 b2669f7 fb096d2 3b7b628 b2669f7 fb096d2 b2669f7 fb096d2 b2669f7 0d14ea5 b2669f7 f04dfa8 b2669f7 fb096d2 b2669f7 fb096d2 b2669f7 3b7b628 b2669f7 3b7b628 b2669f7 fb096d2 b2669f7 fb096d2 b2669f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
from datasets import get_dataset_config_names, get_dataset_split_names
from distilabel.steps.tasks import (
ChatGeneration,
Magpie,
GenerateSentencePair,
TextGeneration,
)
from synthetic_dataset_generator.constants import (
MAGPIE_PRE_QUERY_TEMPLATE,
MAX_NUM_TOKENS,
)
from synthetic_dataset_generator.pipelines.base import _get_llm, _get_llm_class
INFORMATION_SEEKING_PROMPT = (
"You are an AI assistant designed to provide accurate and concise information on a wide"
" range of topics. Your purpose is to assist users in finding specific facts,"
" explanations, or details about various subjects. Provide clear, factual responses and,"
" when appropriate, offer additional context or related information that might be useful"
" to the user."
)
REASONING_PROMPT = (
"You are an AI assistant specialized in logical thinking and problem-solving. Your"
" purpose is to help users work through complex ideas, analyze situations, and draw"
" conclusions based on given information. Approach each query with structured thinking,"
" break down problems into manageable parts, and guide users through the reasoning"
" process step-by-step."
)
PLANNING_PROMPT = (
"You are an AI assistant focused on helping users create effective plans and strategies."
" Your purpose is to assist in organizing thoughts, setting goals, and developing"
" actionable steps for various projects or activities. Offer structured approaches,"
" consider potential challenges, and provide tips for efficient execution of plans."
)
EDITING_PROMPT = (
"You are an AI assistant specialized in editing and improving written content. Your"
" purpose is to help users refine their writing by offering suggestions for grammar,"
" style, clarity, and overall structure. Provide constructive feedback, explain your"
" edits, and offer alternative phrasings when appropriate."
)
CODING_DEBUGGING_PROMPT = (
"You are an AI assistant designed to help with programming tasks. Your purpose is to"
" assist users in writing, reviewing, and debugging code across various programming"
" languages. Provide clear explanations, offer best practices, and help troubleshoot"
" issues. When appropriate, suggest optimizations or alternative approaches to coding"
" problems."
)
MATH_SYSTEM_PROMPT = (
"You are an AI assistant designed to provide helpful, step-by-step guidance on solving"
" math problems. The user will ask you a wide range of complex mathematical questions."
" Your purpose is to assist users in understanding mathematical concepts, working through"
" equations, and arriving at the correct solutions."
)
ROLE_PLAYING_PROMPT = (
"You are an AI assistant capable of engaging in various role-playing scenarios. Your"
" purpose is to adopt different personas or characters as requested by the user. Maintain"
" consistency with the chosen role, respond in character, and help create immersive and"
" interactive experiences for the user."
)
DATA_ANALYSIS_PROMPT = (
"You are an AI assistant specialized in data analysis and interpretation. Your purpose is"
" to help users understand and derive insights from data sets, statistics, and analytical"
" tasks. Offer clear explanations of data trends, assist with statistical calculations,"
" and provide guidance on data visualization and interpretation techniques."
)
CREATIVE_WRITING_PROMPT = (
"You are an AI assistant designed to support creative writing endeavors. Your purpose is"
" to help users craft engaging stories, poems, and other creative texts. Offer"
" suggestions for plot development, character creation, dialogue writing, and other"
" aspects of creative composition. Provide constructive feedback and inspire creativity."
)
ADVICE_SEEKING_PROMPT = (
"You are an AI assistant focused on providing thoughtful advice and guidance. Your"
" purpose is to help users navigate various personal or professional issues by offering"
" balanced perspectives, considering potential outcomes, and suggesting practical"
" solutions. Encourage users to think critically about their situations while providing"
" supportive and constructive advice."
)
BRAINSTORMING_PROMPT = (
"You are an AI assistant specialized in generating ideas and facilitating creative"
" thinking. Your purpose is to help users explore possibilities, think outside the box,"
" and develop innovative concepts. Encourage free-flowing thoughts, offer diverse"
" perspectives, and help users build upon and refine their ideas."
)
PROMPT_CREATION_PROMPT = f"""You are an AI assistant specialized in generating very precise prompts for dataset creation.
Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
In the generated prompt always finish with this sentence: User questions are direct and concise.
The prompt you write should follow the same style and structure as the following example prompts:
{INFORMATION_SEEKING_PROMPT}
{REASONING_PROMPT}
{PLANNING_PROMPT}
{CODING_DEBUGGING_PROMPT}
{EDITING_PROMPT}
{ROLE_PLAYING_PROMPT}
{DATA_ANALYSIS_PROMPT}
{CREATIVE_WRITING_PROMPT}
{ADVICE_SEEKING_PROMPT}
{BRAINSTORMING_PROMPT}
User dataset description:
"""
FOLLOW_UP_TEMPLATE = """Conversation:
{% for message in messages %}
{% if message.role == "user" %}
User Question: {{ message.content }}
{% elif message.role == "assistant" %}
Assistant Response: {{ message.content }}
{% endif %}
{% endfor %}
Please generate the next logical user message in this conversation. Do not include any other information or 'User Question' in your response.
""".rstrip()
DEFAULT_DATASET_DESCRIPTIONS = [
"rude customer assistant for a phone company",
"assistant that solves math puzzles using python",
]
if MAGPIE_PRE_QUERY_TEMPLATE == "llama3":
_STOP_SEQUENCES = [
"<|eot_id|>",
"<|start_header_id|>",
"assistant",
" \n\n",
]
elif MAGPIE_PRE_QUERY_TEMPLATE == "qwen2":
_STOP_SEQUENCES = ["<|im_end|>", "<|im_start|>", "assistant", "\n\n"]
else:
_STOP_SEQUENCES = [
"<|eot_id|>",
"<|start_header_id|>",
"assistant",
" \n\n",
]
def _get_output_mappings(num_turns: int):
if num_turns == 1:
return {"instruction": "prompt", "response": "completion"}
else:
return {"conversation": "messages"}
def get_prompt_generator():
generation_kwargs = {
"temperature": 0.8,
"max_new_tokens": MAX_NUM_TOKENS,
"do_sample": True,
}
prompt_generator = TextGeneration(
llm=_get_llm(generation_kwargs=generation_kwargs),
system_prompt=PROMPT_CREATION_PROMPT,
use_system_prompt=True,
)
prompt_generator.load()
return prompt_generator
def get_magpie_generator(num_turns: int, temperature: float, is_sample: bool):
input_mappings = _get_output_mappings(num_turns)
output_mappings = input_mappings.copy()
if num_turns == 1:
generation_kwargs = {
"temperature": temperature,
"do_sample": True,
"max_new_tokens": 256 if is_sample else int(MAX_NUM_TOKENS * 0.25),
"stop_sequences": _STOP_SEQUENCES,
}
magpie_generator = Magpie(
llm=_get_llm(
generation_kwargs=generation_kwargs,
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
use_magpie_template=True,
),
n_turns=num_turns,
output_mappings=output_mappings,
only_instruction=True,
)
else:
generation_kwargs = {
"temperature": temperature,
"do_sample": True,
"max_new_tokens": 256 if is_sample else int(MAX_NUM_TOKENS * 0.5),
"stop_sequences": _STOP_SEQUENCES,
}
magpie_generator = Magpie(
llm=_get_llm(
generation_kwargs=generation_kwargs,
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
use_magpie_template=True,
),
end_with_user=True,
n_turns=num_turns,
output_mappings=output_mappings,
)
magpie_generator.load()
return magpie_generator
def get_sentence_pair_generator(temperature: float, is_sample: bool):
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": 256 if is_sample else MAX_NUM_TOKENS,
}
sentence_pair_generator = GenerateSentencePair(
llm=_get_llm(generation_kwargs=generation_kwargs),
triplet=False,
action="query",
hard_negative=True,
)
sentence_pair_generator.load()
return sentence_pair_generator
def get_response_generator(
system_prompt: str, num_turns: int, temperature: float, is_sample: bool
):
if num_turns == 1:
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": 256 if is_sample else int(MAX_NUM_TOKENS * 0.5),
}
response_generator = TextGeneration(
llm=_get_llm(is_completion=True, generation_kwargs=generation_kwargs),
system_prompt=system_prompt,
output_mappings={"generation": "completion"},
input_mappings={"instruction": "prompt"},
)
else:
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": MAX_NUM_TOKENS,
}
response_generator = ChatGeneration(
llm=_get_llm(is_completion=True, generation_kwargs=generation_kwargs),
output_mappings={"generation": "completion"},
input_mappings={"conversation": "messages"},
)
response_generator.load()
return response_generator
def get_follow_up_generator(type: str, temperature: float, is_sample: bool):
if type == "instruction":
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": 256 if is_sample else int(MAX_NUM_TOKENS * 0.5),
}
follow_up_generator = TextGeneration(
llm=_get_llm(generation_kwargs=generation_kwargs),
template=FOLLOW_UP_TEMPLATE,
columns=["messages"],
)
else:
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": MAX_NUM_TOKENS,
}
follow_up_generator = ChatGeneration(
llm=_get_llm(is_completion=True, generation_kwargs=generation_kwargs),
)
follow_up_generator.load()
return follow_up_generator
def generate_pipeline_code_system_prompt(
system_prompt: str,
num_turns: int,
num_rows: int,
):
input_mappings = _get_output_mappings(num_turns)
code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator
from distilabel.llms import {_get_llm_class()}
SYSTEM_PROMPT = "{system_prompt}"
with Pipeline(name="sft") as pipeline:
magpie = MagpieGenerator(
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
n_turns={num_turns},
num_rows={num_rows},
batch_size=1,
system_prompt=SYSTEM_PROMPT,
output_mappings={input_mappings},
)
keep_columns = KeepColumns(
columns={list(input_mappings.values())} + ["model_name"],
)
magpie.connect(keep_columns)
if __name__ == "__main__":
distiset = pipeline.run()
"""
return code
def generate_pipeline_code_seed(
repo_id: str,
subset: str,
split: str,
input_type: str,
document_column: str,
num_turns: int,
num_rows: int,
):
code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
from distilabel.models import {_get_llm_class()}
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns{", LoadDataFromDicts" if input_type != "dataset-input" else ""}{", LoadDataFromHub" if input_type == "dataset-input" else ""}{", StepInput, step" if num_turns > 1 else ""}
from distilabel.steps.tasks import GenerateSentencePair, TextGeneration {", ChatGeneration" if num_turns > 1 else ""}
"""
if num_turns > 1:
code += """
FOLLOW_UP_TEMPLATE = '''Conversation:
{{% for message in messages %}}
{{% if message.role == "user" %}}
User Question: {{{{ message.content }}}}
{{% elif message.role == "assistant" %}}
Assistant Response: {{{{ message.content }}}}
{{% endif %}}
{{% endfor %}}
Please generate the next logical user message in this conversation. Do not include any other information or 'User Question' in your response.
'''.rstrip()
@step(inputs=["prompt", "completion"], outputs=["messages"])
def PrepareMessages(*inputs: StepInput) -> StepOutput:
for input in inputs:
for item in input:
item["messages"] = [
{"role": "user", "content": item["prompt"]},
{"role": "assistant", "content": item["completion"]},
]
yield input
@step(inputs=["messages", "generation"], outputs=["messages"])
def FormatMessagesInstruction(*inputs: StepInput) -> StepOutput:
for input in inputs:
for item in input:
item["messages"].append({"role": "user", "content": item["generation"]})
yield input
@step(inputs=["messages", "generation"], outputs=["messages"])
def FormatMessagesResponse(*inputs: StepInput) -> StepOutput:
for input in inputs:
for item in input:
item["messages"].append({"role": "assistant", "content": item["generation"]})
yield input
"""
if input_type == "dataset-input":
code += f"""
with Pipeline(name="sft") as pipeline:
load_the_dataset = LoadDataFromHub(
repo_id='{repo_id}',
config='{subset}',
split='{split}',
num_examples={num_rows},
batch_size=2,
output_mappings={{'{document_column}':'anchor'}},
)
"""
else:
code += """
data = process_and_chunk_files(files=[files])
with Pipeline(name="sft") as pipeline:
load_the_dataset = LoadDataFromDicts(
data = data
)
"""
code += f"""
instruction_generator = GenerateSentencePair(
name="instruction_generation",
triplet=False,
hard_negative=True,
action="query",
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
input_batch_size=10,
output_mappings={{"positive": "prompt"}},
)
response_generator = TextGeneration(
name="response_generation",
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
input_batch_size=10,
input_mappings={{"instruction": "prompt"}},
output_mappings={{"generation": "completion"}},
)
"""
if num_turns > 1:
code += """
prepare_messages = PrepareMessages()
"""
for i in range(num_turns - 1):
code += f"""
follow_up_instruction_{i} = TextGeneration(
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
template=FOLLOW_UP_TEMPLATE,
columns=["messages"],
)
format_instruction_{i} = FormatMessagesInstruction()
follow_up_response_{i} = ChatGeneration(
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
)
format_response_{i} = FormatMessagesResponse()
"""
if num_turns > 1:
code += """
keep_columns = KeepColumns(columns=["messages"])
"""
code += "load_the_dataset >> instruction_generator >> response_generator >> prepare_messages"
for i in range(1, num_turns + 1):
code += f" >> follow_up_instruction_{i} >> format_instruction_{i} >> follow_up_response_{i} >> format_response_{i}"
code += " >> keep_columns"
code += """
if __name__ == "__main__":
distiset = pipeline.run()
)
"""
return code
def generate_pipeline_code(
repo_id: str,
input_type: str,
system_prompt: str,
document_column: str,
num_turns: int,
num_rows: int,
):
if input_type == "dataset-input" and repo_id is not None:
subset = get_dataset_config_names(repo_id)[0]
split = get_dataset_split_names(repo_id, subset)[0]
else:
subset = "default"
split = "train"
if input_type == "prompt-type":
return generate_pipeline_code_system_prompt(
system_prompt=system_prompt,
num_turns=num_turns,
num_rows=num_rows,
)
return generate_pipeline_code_seed(
repo_id=repo_id,
subset=subset,
split=split,
input_type=input_type,
document_column=document_column,
num_turns=num_turns,
num_rows=num_rows,
)
|