|
import ast |
|
import uuid |
|
from typing import Dict, List, Union |
|
|
|
import argilla as rg |
|
import gradio as gr |
|
import pandas as pd |
|
from datasets import Dataset |
|
from distilabel.distiset import Distiset |
|
from huggingface_hub import HfApi |
|
|
|
from distilabel_dataset_generator.apps.base import ( |
|
hide_success_message, |
|
show_success_message, |
|
validate_argilla_user_workspace_dataset, |
|
validate_push_to_hub, |
|
) |
|
from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE, SFT_AVAILABLE |
|
from distilabel_dataset_generator.pipelines.embeddings import ( |
|
get_embeddings, |
|
get_sentence_embedding_dimensions, |
|
) |
|
from distilabel_dataset_generator.pipelines.sft import ( |
|
DEFAULT_DATASET_DESCRIPTIONS, |
|
generate_pipeline_code, |
|
get_magpie_generator, |
|
get_prompt_generator, |
|
get_response_generator, |
|
) |
|
from distilabel_dataset_generator.utils import ( |
|
_LOGGED_OUT_CSS, |
|
get_argilla_client, |
|
get_org_dropdown, |
|
swap_visibility, |
|
) |
|
|
|
|
|
def convert_dataframe_messages(dataframe: pd.DataFrame) -> pd.DataFrame: |
|
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]: |
|
return ast.literal_eval( |
|
messages.replace("'user'}", "'user'},") |
|
.replace("'system'}", "'system'},") |
|
.replace("'assistant'}", "'assistant'},") |
|
) |
|
|
|
if "messages" in dataframe.columns: |
|
dataframe["messages"] = dataframe["messages"].apply( |
|
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x |
|
) |
|
return dataframe |
|
|
|
|
|
def generate_system_prompt(dataset_description, temperature, progress=gr.Progress()): |
|
progress(0.0, desc="Generating system prompt") |
|
progress(0.3, desc="Initializing text generation") |
|
generate_description = get_prompt_generator(temperature) |
|
progress(0.7, desc="Generating system prompt") |
|
result = next( |
|
generate_description.process( |
|
[ |
|
{ |
|
"instruction": dataset_description, |
|
} |
|
] |
|
) |
|
)[0]["generation"] |
|
progress(1.0, desc="System prompt generated") |
|
return result |
|
|
|
|
|
def generate_sample_dataset(system_prompt, num_turns, progress=gr.Progress()): |
|
dataframe = generate_dataset( |
|
system_prompt=system_prompt, |
|
num_turns=num_turns, |
|
num_rows=10, |
|
progress=progress, |
|
is_sample=True, |
|
) |
|
return dataframe |
|
|
|
|
|
def generate_dataset( |
|
system_prompt: str, |
|
num_turns: int = 1, |
|
num_rows: int = 10, |
|
is_sample: bool = False, |
|
progress=gr.Progress(), |
|
) -> pd.DataFrame: |
|
progress(0.0, desc="(1/2) Generating instructions") |
|
magpie_generator = get_magpie_generator(system_prompt, num_turns, is_sample) |
|
response_generator = get_response_generator(system_prompt, num_turns, is_sample) |
|
total_steps: int = num_rows * 2 |
|
batch_size = DEFAULT_BATCH_SIZE |
|
|
|
|
|
n_processed = 0 |
|
magpie_results = [] |
|
while n_processed < num_rows: |
|
progress( |
|
0.5 * n_processed / num_rows, |
|
total=total_steps, |
|
desc="(1/2) Generating instructions", |
|
) |
|
remaining_rows = num_rows - n_processed |
|
batch_size = min(batch_size, remaining_rows) |
|
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)] |
|
batch = list(magpie_generator.process(inputs=inputs)) |
|
magpie_results.extend(batch[0]) |
|
n_processed += batch_size |
|
progress(0.5, desc="(1/2) Generating instructions") |
|
|
|
|
|
n_processed = 0 |
|
response_results = [] |
|
if num_turns == 1: |
|
while n_processed < num_rows: |
|
progress( |
|
0.5 + 0.5 * n_processed / num_rows, |
|
total=total_steps, |
|
desc="(2/2) Generating responses", |
|
) |
|
batch = magpie_results[n_processed : n_processed + batch_size] |
|
responses = list(response_generator.process(inputs=batch)) |
|
response_results.extend(responses[0]) |
|
n_processed += batch_size |
|
for result in response_results: |
|
result["prompt"] = result["instruction"] |
|
result["completion"] = result["generation"] |
|
result["system_prompt"] = system_prompt |
|
else: |
|
for result in magpie_results: |
|
result["conversation"].insert( |
|
0, {"role": "system", "content": system_prompt} |
|
) |
|
result["messages"] = result["conversation"] |
|
while n_processed < num_rows: |
|
progress( |
|
0.5 + 0.5 * n_processed / num_rows, |
|
total=total_steps, |
|
desc="(2/2) Generating responses", |
|
) |
|
batch = magpie_results[n_processed : n_processed + batch_size] |
|
responses = list(response_generator.process(inputs=batch)) |
|
response_results.extend(responses[0]) |
|
n_processed += batch_size |
|
for result in response_results: |
|
result["messages"].append( |
|
{"role": "assistant", "content": result["generation"]} |
|
) |
|
progress( |
|
1, |
|
total=total_steps, |
|
desc="(2/2) Creating dataset", |
|
) |
|
|
|
|
|
distiset_results = [] |
|
for result in response_results: |
|
record = {} |
|
for relevant_keys in [ |
|
"messages", |
|
"prompt", |
|
"completion", |
|
"model_name", |
|
"system_prompt", |
|
]: |
|
if relevant_keys in result: |
|
record[relevant_keys] = result[relevant_keys] |
|
distiset_results.append(record) |
|
|
|
distiset = Distiset( |
|
{ |
|
"default": Dataset.from_list(distiset_results), |
|
} |
|
) |
|
|
|
|
|
distiset = distiset["default"] |
|
if num_turns == 1: |
|
outputs = distiset.to_pandas()[["prompt", "completion", "system_prompt"]] |
|
else: |
|
outputs = distiset.to_pandas()[["messages"]] |
|
dataframe = pd.DataFrame(outputs) |
|
progress(1.0, desc="Dataset generation completed") |
|
return dataframe |
|
|
|
|
|
def push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private): |
|
repo_id = validate_push_to_hub(org_name, repo_name) |
|
original_dataframe = dataframe.copy(deep=True) |
|
dataframe = convert_dataframe_messages(dataframe) |
|
distiset = Distiset({"default": Dataset.from_pandas(dataframe)}) |
|
distiset.push_to_hub( |
|
repo_id=repo_id, |
|
private=private, |
|
include_script=False, |
|
token=oauth_token.token, |
|
create_pr=False, |
|
) |
|
return original_dataframe |
|
|
|
|
|
def push_dataset( |
|
org_name: str, |
|
repo_name: str, |
|
system_prompt: str, |
|
num_turns: int = 1, |
|
num_rows: int = 10, |
|
private: bool = False, |
|
oauth_token: Union[gr.OAuthToken, None] = None, |
|
progress=gr.Progress(), |
|
) -> pd.DataFrame: |
|
dataframe = generate_dataset( |
|
system_prompt=system_prompt, |
|
num_turns=num_turns, |
|
num_rows=num_rows, |
|
) |
|
push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private) |
|
try: |
|
progress(0.1, desc="Setting up user and workspace") |
|
hf_user = HfApi().whoami(token=oauth_token.token)["name"] |
|
client = get_argilla_client() |
|
if client is None: |
|
return "" |
|
if "messages" in dataframe.columns: |
|
settings = rg.Settings( |
|
fields=[ |
|
rg.ChatField( |
|
name="messages", |
|
description="The messages in the conversation", |
|
title="Messages", |
|
), |
|
], |
|
questions=[ |
|
rg.RatingQuestion( |
|
name="rating", |
|
title="Rating", |
|
description="The rating of the conversation", |
|
values=list(range(1, 6)), |
|
), |
|
], |
|
metadata=[ |
|
rg.IntegerMetadataProperty( |
|
name="user_message_length", title="User Message Length" |
|
), |
|
rg.IntegerMetadataProperty( |
|
name="assistant_message_length", |
|
title="Assistant Message Length", |
|
), |
|
], |
|
vectors=[ |
|
rg.VectorField( |
|
name="messages_embeddings", |
|
dimensions=get_sentence_embedding_dimensions(), |
|
) |
|
], |
|
guidelines="Please review the conversation and provide a score for the assistant's response.", |
|
) |
|
|
|
dataframe["user_message_length"] = dataframe["messages"].apply( |
|
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"]) |
|
) |
|
dataframe["assistant_message_length"] = dataframe["messages"].apply( |
|
lambda x: sum( |
|
[len(y["content"]) for y in x if y["role"] == "assistant"] |
|
) |
|
) |
|
dataframe["messages_embeddings"] = get_embeddings( |
|
dataframe["messages"].apply( |
|
lambda x: " ".join([y["content"] for y in x]) |
|
) |
|
) |
|
else: |
|
settings = rg.Settings( |
|
fields=[ |
|
rg.TextField( |
|
name="system_prompt", |
|
title="System Prompt", |
|
description="The system prompt used for the conversation", |
|
required=False, |
|
), |
|
rg.TextField( |
|
name="prompt", |
|
title="Prompt", |
|
description="The prompt used for the conversation", |
|
), |
|
rg.TextField( |
|
name="completion", |
|
title="Completion", |
|
description="The completion from the assistant", |
|
), |
|
], |
|
questions=[ |
|
rg.RatingQuestion( |
|
name="rating", |
|
title="Rating", |
|
description="The rating of the conversation", |
|
values=list(range(1, 6)), |
|
), |
|
], |
|
metadata=[ |
|
rg.IntegerMetadataProperty( |
|
name="prompt_length", title="Prompt Length" |
|
), |
|
rg.IntegerMetadataProperty( |
|
name="completion_length", title="Completion Length" |
|
), |
|
], |
|
vectors=[ |
|
rg.VectorField( |
|
name="prompt_embeddings", |
|
dimensions=get_sentence_embedding_dimensions(), |
|
) |
|
], |
|
guidelines="Please review the conversation and correct the prompt and completion where needed.", |
|
) |
|
dataframe["prompt_length"] = dataframe["prompt"].apply(len) |
|
dataframe["completion_length"] = dataframe["completion"].apply(len) |
|
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"]) |
|
|
|
progress(0.5, desc="Creating dataset") |
|
rg_dataset = client.datasets(name=repo_name, workspace=hf_user) |
|
if rg_dataset is None: |
|
rg_dataset = rg.Dataset( |
|
name=repo_name, |
|
workspace=hf_user, |
|
settings=settings, |
|
client=client, |
|
) |
|
rg_dataset = rg_dataset.create() |
|
progress(0.7, desc="Pushing dataset to Argilla") |
|
hf_dataset = Dataset.from_pandas(dataframe) |
|
rg_dataset.records.log(records=hf_dataset) |
|
progress(1.0, desc="Dataset pushed to Argilla") |
|
except Exception as e: |
|
raise gr.Error(f"Error pushing dataset to Argilla: {e}") |
|
return "" |
|
|
|
|
|
def show_pipeline_code_visibility(): |
|
return {pipeline_code_ui: gr.Accordion(visible=True)} |
|
|
|
|
|
def hide_pipeline_code_visibility(): |
|
return {pipeline_code_ui: gr.Accordion(visible=False)} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(css=_LOGGED_OUT_CSS) as app: |
|
with gr.Column() as main_ui: |
|
if not SFT_AVAILABLE: |
|
gr.Markdown( |
|
value=f"## Supervised Fine-Tuning is not available for the {MODEL} model. Use Hugging Face Llama3 or Qwen2 models." |
|
) |
|
else: |
|
gr.Markdown(value="## 1. Describe the dataset you want") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
dataset_description = gr.Textbox( |
|
label="Dataset description", |
|
placeholder="Give a precise description of your desired dataset.", |
|
) |
|
with gr.Accordion("Temperature", open=False): |
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=1, |
|
value=0.8, |
|
step=0.1, |
|
interactive=True, |
|
show_label=False, |
|
) |
|
load_btn = gr.Button( |
|
"Create dataset", |
|
variant="primary", |
|
) |
|
with gr.Column(scale=2): |
|
examples = gr.Examples( |
|
examples=DEFAULT_DATASET_DESCRIPTIONS, |
|
inputs=[dataset_description], |
|
cache_examples=False, |
|
label="Examples", |
|
) |
|
with gr.Column(scale=1): |
|
pass |
|
|
|
gr.HTML(value="<hr>") |
|
gr.Markdown(value="## 2. Configure your dataset") |
|
with gr.Row(equal_height=False): |
|
with gr.Column(scale=2): |
|
system_prompt = gr.Textbox( |
|
label="System prompt", |
|
placeholder="You are a helpful assistant.", |
|
) |
|
num_turns = gr.Number( |
|
value=1, |
|
label="Number of turns in the conversation", |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
interactive=True, |
|
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).", |
|
) |
|
btn_apply_to_sample_dataset = gr.Button( |
|
"Refresh dataset", variant="secondary" |
|
) |
|
with gr.Column(scale=3): |
|
dataframe = gr.Dataframe( |
|
headers=["prompt", "completion"], |
|
wrap=True, |
|
height=500, |
|
interactive=False, |
|
) |
|
|
|
gr.HTML(value="<hr>") |
|
gr.Markdown(value="## 3. Generate your dataset") |
|
with gr.Row(equal_height=False): |
|
with gr.Column(scale=2): |
|
org_name = get_org_dropdown() |
|
repo_name = gr.Textbox( |
|
label="Repo name", |
|
placeholder="dataset_name", |
|
value=f"my-distiset-{str(uuid.uuid4())[:8]}", |
|
interactive=True, |
|
) |
|
num_rows = gr.Number( |
|
label="Number of rows", |
|
value=10, |
|
interactive=True, |
|
scale=1, |
|
) |
|
private = gr.Checkbox( |
|
label="Private dataset", |
|
value=False, |
|
interactive=True, |
|
scale=1, |
|
) |
|
btn_push_to_hub = gr.Button( |
|
"Push to Hub", variant="primary", scale=2 |
|
) |
|
with gr.Column(scale=3): |
|
success_message = gr.Markdown(visible=True) |
|
with gr.Accordion( |
|
"Do you want to go further? Customize and run with Distilabel", |
|
open=False, |
|
visible=False, |
|
) as pipeline_code_ui: |
|
code = generate_pipeline_code( |
|
system_prompt=system_prompt.value, |
|
num_turns=num_turns.value, |
|
num_rows=num_rows.value, |
|
) |
|
pipeline_code = gr.Code( |
|
value=code, |
|
language="python", |
|
label="Distilabel Pipeline Code", |
|
) |
|
|
|
load_btn.click( |
|
fn=generate_system_prompt, |
|
inputs=[dataset_description, temperature], |
|
outputs=[system_prompt], |
|
show_progress=True, |
|
).then( |
|
fn=generate_sample_dataset, |
|
inputs=[system_prompt, num_turns], |
|
outputs=[dataframe], |
|
show_progress=True, |
|
) |
|
|
|
btn_apply_to_sample_dataset.click( |
|
fn=generate_sample_dataset, |
|
inputs=[system_prompt, num_turns], |
|
outputs=[dataframe], |
|
show_progress=True, |
|
) |
|
|
|
btn_push_to_hub.click( |
|
fn=validate_argilla_user_workspace_dataset, |
|
inputs=[repo_name], |
|
outputs=[success_message], |
|
show_progress=True, |
|
).then( |
|
fn=validate_push_to_hub, |
|
inputs=[org_name, repo_name], |
|
outputs=[success_message], |
|
show_progress=True, |
|
).success( |
|
fn=hide_success_message, |
|
outputs=[success_message], |
|
show_progress=True, |
|
).success( |
|
fn=hide_pipeline_code_visibility, |
|
inputs=[], |
|
outputs=[pipeline_code_ui], |
|
).success( |
|
fn=push_dataset, |
|
inputs=[ |
|
org_name, |
|
repo_name, |
|
system_prompt, |
|
num_turns, |
|
num_rows, |
|
private, |
|
], |
|
outputs=[success_message], |
|
show_progress=True, |
|
).success( |
|
fn=show_success_message, |
|
inputs=[org_name, repo_name], |
|
outputs=[success_message], |
|
).success( |
|
fn=generate_pipeline_code, |
|
inputs=[system_prompt, num_turns, num_rows], |
|
outputs=[pipeline_code], |
|
).success( |
|
fn=show_pipeline_code_visibility, |
|
inputs=[], |
|
outputs=[pipeline_code_ui], |
|
) |
|
|
|
app.load(fn=swap_visibility, outputs=main_ui) |
|
app.load(fn=get_org_dropdown, outputs=[org_name]) |
|
|