Spaces:
Sleeping
Sleeping
File size: 21,083 Bytes
e26ea16 8b077e8 e26ea16 338f585 e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 e1175ed 338f585 e1175ed 338f585 e1175ed 338f585 e1175ed 338f585 e1175ed 338f585 e1175ed 338f585 e1175ed 338f585 e1175ed 8b077e8 e1175ed e26ea16 ababf21 e26ea16 ababf21 e26ea16 e1175ed ababf21 e1175ed ababf21 e26ea16 8b077e8 338f585 8b077e8 338f585 8b077e8 338f585 8b077e8 4ad946f 8b077e8 4ad946f 8b077e8 4ad946f 8b077e8 4ad946f 8b077e8 4ad946f 8b077e8 e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 8b077e8 338f585 8b077e8 338f585 8b077e8 e26ea16 e1175ed e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 8b077e8 e26ea16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import gradio as gr
import os
from typing import List, Dict
import numpy as np
from datasets import load_dataset
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer, util
import torch
from ragas import evaluate
from ragas.metrics import (
ContextRecall,
AnswerRelevancy,
Faithfulness,
ContextPrecision
)
import pandas as pd
# Constants and setup
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")
CHUNK_SIZES = {
"small": {"recursive": 512, "fixed": 512, "token": 256},
"medium": {"recursive": 1024, "fixed": 1024, "token": 512}
}
# Initialize sentence transformer for evaluation
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
class RAGEvaluator:
def __init__(self):
self.datasets = {
"squad": "squad_v2",
"msmarco": "ms_marco"
}
self.current_dataset = None
self.test_samples = []
def load_dataset(self, dataset_name: str, num_samples: int = 10):
"""Load dataset with proper error handling"""
try:
if dataset_name == "squad":
dataset = load_dataset("squad_v2", split="validation")
samples = dataset.select(range(0, 1000, 100))[:num_samples]
self.test_samples = []
for sample in samples:
# Handle SQuAD format
answers = sample["answers"]
if answers["text"]: # Check if there are answers
self.test_samples.append({
"question": sample["question"],
"ground_truth": answers["text"][0],
"context": sample["context"]
})
elif dataset_name == "msmarco":
dataset = load_dataset("ms_marco", "v2.1", split="test") # Changed from dev to test
samples = dataset.select(range(0, 1000, 100))[:num_samples]
self.test_samples = []
for sample in samples:
if sample["answers"]: # Check if answers exist
self.test_samples.append({
"question": sample["query"],
"ground_truth": sample["answers"][0],
"context": sample["passages"]["passage_text"][0]
})
self.current_dataset = dataset_name
return {
"dataset": dataset_name,
"samples_loaded": len(self.test_samples),
"example_questions": [s["question"] for s in self.test_samples[:3]]
}
except Exception as e:
print(f"Error loading dataset: {str(e)}")
return {
"error": str(e),
"status": "failed"
}
def evaluate_configuration(self, vector_db, qa_chain, splitting_strategy: str, chunk_size: str) -> Dict:
"""Evaluate with progress tracking and error handling"""
if not self.test_samples:
return {"error": "No dataset loaded"}
results = []
total_questions = len(self.test_samples)
# Add progress tracking
for i, sample in enumerate(self.test_samples):
print(f"Evaluating question {i+1}/{total_questions}")
try:
response = qa_chain.invoke({
"question": sample["question"],
"chat_history": []
})
results.append({
"question": sample["question"],
"answer": response["answer"],
"contexts": [doc.page_content for doc in response["source_documents"]],
"ground_truths": [sample["ground_truth"]]
})
except Exception as e:
print(f"Error processing question {i+1}: {str(e)}")
continue
if not results:
return {
"configuration": f"{splitting_strategy}_{chunk_size}",
"error": "No successful evaluations",
"questions_evaluated": 0
}
try:
# Calculate RAGAS metrics
eval_dataset = Dataset.from_list(results)
metrics = [ContextRecall(), AnswerRelevancy(), Faithfulness(), ContextPrecision()]
scores = evaluate(eval_dataset, metrics=metrics)
return {
"configuration": f"{splitting_strategy}_{chunk_size}",
"questions_evaluated": len(results),
"context_recall": float(scores['context_recall']),
"answer_relevancy": float(scores['answer_relevancy']),
"faithfulness": float(scores['faithfulness']),
"context_precision": float(scores['context_precision']),
"average_score": float(np.mean([
scores['context_recall'],
scores['answer_relevancy'],
scores['faithfulness'],
scores['context_precision']
]))
}
except Exception as e:
return {
"configuration": f"{splitting_strategy}_{chunk_size}",
"error": str(e),
"questions_evaluated": len(results)
}
# Text splitting and database functions
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"token": TokenTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str):
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy]
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": lambda: FAISS.from_documents(splits, embeddings),
"chroma": lambda: Chroma.from_documents(splits, embeddings),
"qdrant": lambda: Qdrant.from_documents(
splits,
embeddings,
location=":memory:",
collection_name="pdf_docs"
)
}
return db_creators[db_choice]()
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()):
"""Initialize vector database with error handling"""
try:
if not list_file_obj:
return None, "No files uploaded. Please upload PDF documents first."
list_file_path = [x.name for x in list_file_obj if x is not None]
if not list_file_path:
return None, "No valid files found. Please upload PDF documents."
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size)
if not doc_splits:
return None, "No content extracted from documents."
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created successfully using {splitting_strategy} splitting and {db_choice} vector database!"
except Exception as e:
return None, f"Error creating database: {str(e)}"
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize LLM chain with error handling"""
try:
if vector_db is None:
return None, "Please create vector database first."
llm_model = list_llm[llm_choice]
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True
)
return qa_chain, "LLM initialized successfully!"
except Exception as e:
return None, f"Error initializing LLM: {str(e)}"
def conversation(qa_chain, message, history):
"""Fixed conversation function returning all required outputs"""
response = qa_chain.invoke({
"question": message,
"chat_history": [(hist[0], hist[1]) for hist in history]
})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
# Get source documents, ensure we have exactly 3
sources = response["source_documents"][:3]
source_contents = []
source_pages = []
# Process available sources
for source in sources:
source_contents.append(source.page_content.strip())
source_pages.append(source.metadata.get("page", 0) + 1)
# Pad with empty values if we have fewer than 3 sources
while len(source_contents) < 3:
source_contents.append("")
source_pages.append(0)
# Return all required outputs in correct order
return (
qa_chain, # State
gr.update(value=""), # Clear message box
history + [(message, response_answer)], # Updated chat history
source_contents[0], # First source
source_pages[0], # First page
source_contents[1], # Second source
source_pages[1], # Second page
source_contents[2], # Third source
source_pages[2] # Third page
)
def demo():
evaluator = RAGEvaluator()
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>")
with gr.Tabs():
# Custom PDF Tab
with gr.Tab("Custom PDF Chat"):
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(
height=300,
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload PDF documents"
)
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
chunk_size = gr.Radio(
["small", "medium"],
label="Chunk Size",
value="medium"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
db_progress = gr.Textbox(
value="Not initialized",
show_label=False
)
gr.Markdown("<b>Step 2 - Configure LLM</b>")
with gr.Row():
llm_choice = gr.Radio(
list_llm_simple,
label="Available LLMs",
value=list_llm_simple[0],
type="index"
)
with gr.Row():
with gr.Accordion("LLM Parameters", open=False):
temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=128,
maximum=4096,
value=2048,
step=128,
label="Max Tokens"
)
top_k = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Top K"
)
with gr.Row():
init_llm_btn = gr.Button("Initialize LLM")
llm_progress = gr.Textbox(
value="Not initialized",
show_label=False
)
with gr.Column(scale=200):
gr.Markdown("<b>Step 3 - Chat with Documents</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Source References", open=False):
with gr.Row():
source1 = gr.Textbox(label="Source 1", lines=2)
page1 = gr.Number(label="Page")
with gr.Row():
source2 = gr.Textbox(label="Source 2", lines=2)
page2 = gr.Number(label="Page")
with gr.Row():
source3 = gr.Textbox(label="Source 3", lines=2)
page3 = gr.Number(label="Page")
with gr.Row():
msg = gr.Textbox(
placeholder="Ask a question",
show_label=False
)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton(
[msg, chatbot],
value="Clear Chat"
)
# Evaluation Tab
with gr.Tab("RAG Evaluation"):
with gr.Row():
dataset_choice = gr.Dropdown(
choices=list(evaluator.datasets.keys()),
label="Select Evaluation Dataset",
value="squad"
)
load_dataset_btn = gr.Button("Load Dataset")
with gr.Row():
dataset_info = gr.JSON(label="Dataset Information")
with gr.Row():
eval_splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
eval_chunk_size = gr.Radio(
["small", "medium"],
label="Chunk Size",
value="medium"
)
with gr.Row():
evaluate_btn = gr.Button("Run Evaluation")
evaluation_results = gr.DataFrame(label="Evaluation Results")
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, chunk_size, db_choice],
outputs=[vector_db, db_progress]
).then(
lambda x: gr.update(interactive=True) if x[0] is not None else gr.update(interactive=False),
inputs=[vector_db],
outputs=[init_llm_btn]
)
init_llm_btn.click(
initialize_llmchain,
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda x: gr.update(interactive=True) if x[0] is not None else gr.update(interactive=False),
inputs=[qa_chain],
outputs=[msg]
)
load_dataset_btn.click(
lambda x: evaluator.load_dataset(x),
inputs=[dataset_choice],
outputs=[dataset_info]
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
)
def load_dataset_handler(dataset_name):
try:
result = evaluator.load_dataset(dataset_name)
if result.get("status") == "success":
return {
"dataset": result["dataset"],
"samples_loaded": result["num_samples"],
"example_questions": result["sample_questions"],
"status": "ready for evaluation"
}
else:
return {
"error": result.get("error", "Unknown error occurred"),
"status": "failed to load dataset"
}
except Exception as e:
return {
"error": str(e),
"status": "failed to load dataset"
}
def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain):
if not evaluator.current_dataset:
return pd.DataFrame()
results = evaluator.evaluate_configuration(
vector_db=vector_db,
qa_chain=qa_chain,
splitting_strategy=splitting_strategy,
chunk_size=chunk_size
)
return pd.DataFrame([results])
load_dataset_btn.click(
load_dataset_handler,
inputs=[dataset_choice],
outputs=[dataset_info]
)
evaluate_btn.click(
run_evaluation,
inputs=[
dataset_choice,
eval_splitting_strategy,
eval_chunk_size,
vector_db,
qa_chain
],
outputs=[evaluation_results]
)
# Clear button handlers
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
outputs=[chatbot, source1, page1, source2, page2, source3, page3]
)
# Launch the demo
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |