RAG-PDF-Chatbot / app3.py
arjunanand13's picture
Rename app.py to app3.py
e2cc20f verified
raw
history blame
13.1 kB
import gradio as gr
import os
from typing import List, Dict
import numpy as np
from datasets import load_dataset
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer, util
import torch
# Constants and setup
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")
# Initialize sentence transformer for evaluation
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Text splitting strategies
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"token": TokenTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
# Custom evaluation metrics
def calculate_semantic_similarity(text1: str, text2: str) -> float:
embeddings1 = sentence_model.encode([text1], convert_to_tensor=True)
embeddings2 = sentence_model.encode([text2], convert_to_tensor=True)
similarity = util.pytorch_cos_sim(embeddings1, embeddings2)
return float(similarity[0][0])
def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]:
# Answer similarity with ground truth
answer_similarity = calculate_semantic_similarity(answer, ground_truth)
# Context relevance - average similarity between question and contexts
context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts]
context_relevance = np.mean(context_scores)
# Answer relevance - similarity between question and answer
answer_relevance = calculate_semantic_similarity(question, answer)
return {
"answer_similarity": answer_similarity,
"context_relevance": context_relevance,
"answer_relevance": answer_relevance,
"average_score": np.mean([answer_similarity, context_relevance, answer_relevance])
}
# Load and split PDF document
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Vector database creation functions
def create_faiss_db(splits, embeddings):
return FAISS.from_documents(splits, embeddings)
def create_chroma_db(splits, embeddings):
return Chroma.from_documents(splits, embeddings)
def create_qdrant_db(splits, embeddings):
return Qdrant.from_documents(
splits,
embeddings,
location=":memory:",
collection_name="pdf_docs"
)
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": create_faiss_db,
"chroma": create_chroma_db,
"qdrant": create_qdrant_db
}
return db_creators[db_choice](splits, embeddings)
def load_evaluation_dataset():
dataset = load_dataset("explodinggradients/fiqa", split="test", trust_remote_code=True)
return dataset
def evaluate_rag_pipeline(qa_chain, dataset):
# Sample a few examples for evaluation
eval_samples = dataset.select(range(5))
results = []
for sample in eval_samples:
question = sample["question"]
# Get response from the chain
response = qa_chain.invoke({
"question": question,
"chat_history": []
})
# Evaluate response
eval_result = evaluate_response(
question=question,
answer=response["answer"],
ground_truth=sample["answer"],
contexts=[doc.page_content for doc in response["source_documents"]]
)
results.append(eval_result)
# Calculate average scores across all samples
avg_results = {
metric: float(np.mean([r[metric] for r in results]))
for metric in results[0].keys()
}
return avg_results
# Initialize langchain LLM chain
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
# Get the full model name from the index
llm_model = list_llm[llm_choice]
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
model=llm_model # Add model parameter
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain, "LLM initialized successfully!"
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path, splitting_strategy)
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({
"question": message,
"chat_history": formatted_chat_history
})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>")
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
evaluate_btn = gr.Button("Evaluate RAG Pipeline")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
evaluation_results = gr.JSON(label="Evaluation Results")
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, db_choice],
outputs=[vector_db, db_progress]
)
evaluate_btn.click(
lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None,
inputs=[qa_chain],
outputs=[evaluation_results]
)
qachain_btn.click(
initialize_llmchain, # Fixed function name here
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()