Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from typing import List, Dict | |
import numpy as np | |
from datasets import load_dataset | |
from langchain.text_splitter import ( | |
RecursiveCharacterTextSplitter, | |
CharacterTextSplitter, | |
TokenTextSplitter | |
) | |
from langchain_community.vectorstores import FAISS, Chroma, Qdrant | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from sentence_transformers import SentenceTransformer, util | |
import torch | |
# Constants and setup | |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
api_token = os.getenv("HF_TOKEN") | |
# Initialize sentence transformer for evaluation | |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
# Text splitting strategies | |
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64): | |
splitters = { | |
"recursive": RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
), | |
"fixed": CharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
), | |
"token": TokenTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
} | |
return splitters.get(strategy) | |
# Custom evaluation metrics | |
def calculate_semantic_similarity(text1: str, text2: str) -> float: | |
embeddings1 = sentence_model.encode([text1], convert_to_tensor=True) | |
embeddings2 = sentence_model.encode([text2], convert_to_tensor=True) | |
similarity = util.pytorch_cos_sim(embeddings1, embeddings2) | |
return float(similarity[0][0]) | |
def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]: | |
# Answer similarity with ground truth | |
answer_similarity = calculate_semantic_similarity(answer, ground_truth) | |
# Context relevance - average similarity between question and contexts | |
context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts] | |
context_relevance = np.mean(context_scores) | |
# Answer relevance - similarity between question and answer | |
answer_relevance = calculate_semantic_similarity(question, answer) | |
return { | |
"answer_similarity": answer_similarity, | |
"context_relevance": context_relevance, | |
"answer_relevance": answer_relevance, | |
"average_score": np.mean([answer_similarity, context_relevance, answer_relevance]) | |
} | |
# Load and split PDF document | |
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = get_text_splitter(splitting_strategy) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Vector database creation functions | |
def create_faiss_db(splits, embeddings): | |
return FAISS.from_documents(splits, embeddings) | |
def create_chroma_db(splits, embeddings): | |
return Chroma.from_documents(splits, embeddings) | |
def create_qdrant_db(splits, embeddings): | |
return Qdrant.from_documents( | |
splits, | |
embeddings, | |
location=":memory:", | |
collection_name="pdf_docs" | |
) | |
def create_db(splits, db_choice: str = "faiss"): | |
embeddings = HuggingFaceEmbeddings() | |
db_creators = { | |
"faiss": create_faiss_db, | |
"chroma": create_chroma_db, | |
"qdrant": create_qdrant_db | |
} | |
return db_creators[db_choice](splits, embeddings) | |
def load_evaluation_dataset(): | |
dataset = load_dataset("explodinggradients/fiqa", split="test", trust_remote_code=True) | |
return dataset | |
def evaluate_rag_pipeline(qa_chain, dataset): | |
# Sample a few examples for evaluation | |
eval_samples = dataset.select(range(5)) | |
results = [] | |
for sample in eval_samples: | |
question = sample["question"] | |
# Get response from the chain | |
response = qa_chain.invoke({ | |
"question": question, | |
"chat_history": [] | |
}) | |
# Evaluate response | |
eval_result = evaluate_response( | |
question=question, | |
answer=response["answer"], | |
ground_truth=sample["answer"], | |
contexts=[doc.page_content for doc in response["source_documents"]] | |
) | |
results.append(eval_result) | |
# Calculate average scores across all samples | |
avg_results = { | |
metric: float(np.mean([r[metric] for r in results])) | |
for metric in results[0].keys() | |
} | |
return avg_results | |
# Initialize langchain LLM chain | |
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
# Get the full model name from the index | |
llm_model = list_llm[llm_choice] | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
huggingfacehub_api_token=api_token, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
model=llm_model # Add model parameter | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
return qa_chain, "LLM initialized successfully!" | |
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
doc_splits = load_doc(list_file_path, splitting_strategy) | |
vector_db = create_db(doc_splits, db_choice) | |
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain.invoke({ | |
"question": message, | |
"chat_history": formatted_chat_history | |
}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def demo(): | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>") | |
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""") | |
with gr.Row(): | |
with gr.Column(scale=86): | |
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>") | |
with gr.Row(): | |
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents") | |
with gr.Row(): | |
splitting_strategy = gr.Radio( | |
["recursive", "fixed", "token"], | |
label="Text Splitting Strategy", | |
value="recursive" | |
) | |
db_choice = gr.Radio( | |
["faiss", "chroma", "qdrant"], | |
label="Vector Database", | |
value="faiss" | |
) | |
with gr.Row(): | |
db_btn = gr.Button("Create vector database") | |
evaluate_btn = gr.Button("Evaluate RAG Pipeline") | |
with gr.Row(): | |
db_progress = gr.Textbox(value="Not initialized", show_label=False) | |
evaluation_results = gr.JSON(label="Evaluation Results") | |
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>") | |
with gr.Row(): | |
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index") | |
with gr.Row(): | |
with gr.Accordion("LLM input parameters", open=False): | |
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature") | |
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens") | |
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k") | |
with gr.Row(): | |
qachain_btn = gr.Button("Initialize Question Answering Chatbot") | |
llm_progress = gr.Textbox(value="Not initialized", show_label=False) | |
with gr.Column(scale=200): | |
gr.Markdown("<b>Step 2 - Chat with your Document</b>") | |
chatbot = gr.Chatbot(height=505) | |
with gr.Accordion("Relevant context from the source document", open=False): | |
with gr.Row(): | |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Ask a question", container=True) | |
with gr.Row(): | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") | |
# Event handlers | |
db_btn.click( | |
initialize_database, | |
inputs=[document, splitting_strategy, db_choice], | |
outputs=[vector_db, db_progress] | |
) | |
evaluate_btn.click( | |
lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None, | |
inputs=[qa_chain], | |
outputs=[evaluation_results] | |
) | |
qachain_btn.click( | |
initialize_llmchain, # Fixed function name here | |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], | |
outputs=[qa_chain, llm_progress] | |
).then( | |
lambda: [None, "", 0, "", 0, "", 0], | |
inputs=None, | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], | |
queue=False | |
) | |
msg.submit(conversation, | |
inputs=[qa_chain, msg, chatbot], | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], | |
queue=False | |
) | |
submit_btn.click(conversation, | |
inputs=[qa_chain, msg, chatbot], | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], | |
queue=False | |
) | |
clear_btn.click( | |
lambda: [None, "", 0, "", 0, "", 0], | |
inputs=None, | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], | |
queue=False | |
) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() |