Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
model_name = 'armandnlp/gpt2-TOD_finetuned_SGD' | |
tokenizer_TOD = AutoTokenizer.from_pretrained(model_name) | |
model_TOD = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_response(prompt): | |
input_ids = tokenizer_TOD(prompt, return_tensors="pt").input_ids | |
outputs = model_TOD.generate(input_ids, | |
do_sample=False, | |
max_length=1024, | |
eos_token_id=50262) | |
return tokenizer_TOD.batch_decode(outputs)[0] | |
#<|context|> <|user|> I want to go to the restaurant.<|endofcontext|> | |
iface = gr.Interface(fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="gpt2-TOD", | |
examples=[["<|context|> <|user|> I'm super hungry ! I want to go to the restaurant.<|endofcontext|>"], | |
"<|context|> <|user|> I want to go to the restaurant.\ | |
<|system|> What food would you like to eat ? <|user|> Italian sounds good. <|endofcontext|>"], | |
description="Passing in a task-oriented dialogue context generates a belief state, actions to take and a response based on those actions", | |
) | |
iface.launch() | |