Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------- | |
# Based on the timm code base | |
# https://github.com/huggingface/pytorch-image-models | |
# -------------------------------------------------------- | |
import io | |
import os | |
import ast | |
import json | |
from pathlib import Path | |
from safetensors.torch import load as load_st | |
import torch | |
from .dist import save_on_main, is_main_process | |
from .timm.model import get_state_dict | |
from .s3_utils import save_on_s3 | |
def _load_checkpoint_for_ema(model_ema, checkpoint): | |
""" | |
Workaround for ModelEma._load_checkpoint to accept an already-loaded object | |
""" | |
mem_file = io.BytesIO() | |
torch.save(checkpoint, mem_file) | |
mem_file.seek(0) | |
model_ema._load_checkpoint(mem_file) | |
def load_state_dict(model, state_dict, prefix='', ignore_missing=''): | |
missing_keys = [] | |
unexpected_keys = [] | |
error_msgs = [] | |
# copy state_dict so _load_from_state_dict can modify it | |
metadata = getattr(state_dict, '_metadata', None) | |
state_dict = state_dict.copy() | |
if metadata is not None: | |
state_dict._metadata = metadata | |
def load(module, prefix=''): | |
local_metadata = {} if metadata is None else metadata.get( | |
prefix[:-1], {}) | |
module._load_from_state_dict( | |
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + '.') | |
load(model, prefix=prefix) | |
warn_missing_keys = [] | |
ignore_missing_keys = [] | |
for key in missing_keys: | |
keep_flag = True | |
for ignore_key in ignore_missing.split('|'): | |
if ignore_key in key: | |
keep_flag = False | |
break | |
if keep_flag: | |
warn_missing_keys.append(key) | |
else: | |
ignore_missing_keys.append(key) | |
missing_keys = warn_missing_keys | |
if len(missing_keys) > 0: | |
print("Weights of {} not initialized from pretrained model: {}".format( | |
model.__class__.__name__, missing_keys)) | |
if len(unexpected_keys) > 0: | |
print("Weights from pretrained model not used in {}: {}".format( | |
model.__class__.__name__, unexpected_keys)) | |
if len(ignore_missing_keys) > 0: | |
print("Ignored weights of {} not initialized from pretrained model: {}".format( | |
model.__class__.__name__, ignore_missing_keys)) | |
if len(error_msgs) > 0: | |
print('\n'.join(error_msgs)) | |
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, loss_balancer=None, model_ema=None, ckpt_name=None, use_s3=False, all_nodes=False): | |
output_dir = Path(args.output_dir) | |
epoch_name = str(epoch) | |
ckpt_name = ckpt_name or epoch_name | |
# Only create the save_dict on the main process, unless all_nodes is set to True | |
if is_main_process() or (all_nodes and args.gpu == 0): | |
checkpoint_path = os.path.join(output_dir, f'checkpoint-{ckpt_name}.pth') | |
to_save = { | |
'model': model_without_ddp.state_dict(), | |
'epoch': epoch, | |
'args': args, | |
'scaler': loss_scaler.state_dict(), | |
} | |
if optimizer is not None: | |
to_save['optimizer'] = optimizer.state_dict() | |
if loss_balancer is not None: | |
to_save['loss_balancer'] = loss_balancer.state_dict() | |
if model_ema is not None: | |
to_save['model_ema'] = get_state_dict(model_ema) | |
save_on_main(to_save, checkpoint_path) | |
if use_s3: | |
s3_path = os.path.join(args.s3_save_dir, f'checkpoint-{ckpt_name}.pth') | |
save_on_s3(checkpoint_path, s3_path, args.s3_endpoint) | |
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): | |
output_dir = Path(args.output_dir) | |
# torch.amp | |
if args.auto_resume and len(args.resume) == 0: | |
import glob | |
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) | |
latest_ckpt = -1 | |
for ckpt in all_checkpoints: | |
t = ckpt.split('-')[-1].split('.')[0] | |
if t.isdigit(): | |
latest_ckpt = max(int(t), latest_ckpt) | |
if latest_ckpt >= 0: | |
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) | |
print("Auto resume checkpoint: %s" % args.resume) | |
if args.resume: | |
if args.resume.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.resume, map_location='cpu') | |
else: | |
checkpoint = torch.load(args.resume, map_location='cpu') | |
model_without_ddp.load_state_dict(checkpoint['model']) | |
print("Resume checkpoint %s" % args.resume) | |
if 'optimizer' in checkpoint and 'epoch' in checkpoint: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
args.start_epoch = checkpoint['epoch'] + 1 | |
if 'scaler' in checkpoint: | |
loss_scaler.load_state_dict(checkpoint['scaler']) | |
print("With optim & sched!") | |
if hasattr(args, 'model_ema') and args.model_ema: | |
_load_checkpoint_for_ema(model_ema, {'state_dict_ema': checkpoint['model_ema']}) | |
print("With EMA!") | |
def parse_metadata(metadata_str): | |
metadata = {} | |
for k, v in metadata_str.items(): | |
try: | |
v_parsed = ast.literal_eval(v) | |
except: | |
v_parsed = v | |
metadata[k] = v_parsed | |
return metadata | |
def load_safetensors(safetensors_path, return_metadata=True): | |
with open(safetensors_path, 'rb') as f: | |
data = f.read() | |
tensors = load_st(data) | |
if not return_metadata: | |
return tensors | |
n_header = data[:8] | |
n = int.from_bytes(n_header, "little") | |
metadata_bytes = data[8 : 8 + n] | |
header = json.loads(metadata_bytes) | |
metadata = header.get("__metadata__", {}) | |
metadata = parse_metadata(metadata) | |
return tensors, metadata |