Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------- | |
# Based on BEiT, timm, DINO, DeiT code base | |
# https://github.com/microsoft/unilm/tree/master/beit | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit | |
# https://github.com/facebookresearch/dino | |
# -------------------------------------------------------- | |
import json | |
import torch | |
from torch import optim as optim | |
def get_num_layer_for_vit(var_name, num_max_layer): | |
if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): | |
return 0 | |
elif var_name.startswith("patch_embed"): | |
return 0 | |
elif var_name.startswith("input_adapters") or var_name.startswith("encoder_embeddings"): | |
return 0 | |
elif var_name.startswith("rel_pos_bias"): | |
return num_max_layer - 1 | |
elif var_name.startswith("blocks") or (var_name.startswith("encoder.") and not var_name.startswith("encoder_norm")): | |
layer_id = int(var_name.split('.')[1]) | |
return layer_id + 1 | |
else: | |
return num_max_layer - 1 | |
def get_num_layer_for_beit(var_name, num_max_layer): | |
if "embed" in var_name: | |
return 0 | |
elif var_name in ( | |
"cls_token", "mask_token", "pos_embed", "language_pos_embed", | |
"word_embeddings.weight", "vision_cls_token", "vision_pos_embed" | |
): | |
return 0 | |
elif var_name.startswith("patch_embed"): | |
return 0 | |
elif var_name.startswith("rel_pos_bias"): | |
return num_max_layer - 1 | |
elif "layers." in var_name: | |
layer_id = int(var_name.split('layers.')[1].split('.')[0]) | |
return layer_id + 1 | |
else: | |
return num_max_layer - 1 | |
def get_num_layer_for_fm(var_name, num_enc_layers, num_dec_layers, last_layer_mod_emb=False): | |
"""Layers go from 0 to (num_enc + num_dec + 1) | |
where 0 is the encoder embedding and (num_enc + num_dec + 1) is the projection following the decoder | |
""" | |
if var_name.startswith("encoder_embeddings"): | |
return 0 | |
elif var_name.startswith("encoder."): | |
layer_id = int(var_name.split('.')[1]) | |
return layer_id + 1 | |
elif var_name in ("encoder_norm", "decoder_proj_context", "mask_token"): | |
return num_enc_layers | |
elif not last_layer_mod_emb and var_name.startswith("decoder_embeddings.") and "mod_emb" in var_name: | |
return num_enc_layers | |
elif var_name.startswith("decoder."): | |
layer_id = int(var_name.split('.')[1]) | |
return num_enc_layers + layer_id + 1 | |
else: | |
return num_enc_layers + num_dec_layers + 1 | |
class LayerDecayValueAssigner(object): | |
def __init__(self, values, is_beit3=False): | |
self.values = values | |
self.is_beit3 = is_beit3 | |
def get_scale(self, layer_id): | |
return self.values[layer_id] | |
def get_layer_id(self, var_name): | |
if self.is_beit3: | |
return get_num_layer_for_beit(var_name, len(self.values)) | |
else: | |
return get_num_layer_for_vit(var_name, len(self.values)) | |
class LayerDecayValueAssignerForFourM(object): | |
def __init__(self, values, num_enc_layers, num_dec_layers, last_layer_mod_emb=False): | |
self.values = values | |
self.num_enc_layers = num_enc_layers | |
self.num_dec_layers = num_dec_layers | |
self.last_layer_mod_emb = last_layer_mod_emb | |
assert len(values) == num_enc_layers + num_dec_layers + 2 | |
def get_scale(self, layer_id): | |
return self.values[layer_id] | |
def get_layer_id(self, var_name): | |
return get_num_layer_for_fm(var_name, num_enc_layers=self.num_enc_layers, num_dec_layers=self.num_dec_layers, last_layer_mod_emb=self.last_layer_mod_emb) | |
def get_parameter_groups( | |
model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None, | |
decoder_decay=None, decoder_list=(), no_lr_scale_list=[]): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
for name, param in model.named_parameters(): | |
# Remove wrapped module to be compatible with FSDP | |
name = name.replace("_fsdp_wrapped_module.", "") | |
if not param.requires_grad: | |
continue # frozen weights | |
# Assign weight decay values | |
# Only norm and bias terms should have no decay | |
# Previously, this checked if (param.shape) == 1 which is incompatible with FSDP which flattens all params | |
if "norm." in name or ".norm" in name or name.endswith(".bias") or name.endswith(".lookup_table_weight") or name.endswith(".gamma") or name in skip_list: | |
group_name = "no_decay" | |
this_weight_decay = 0. | |
elif decoder_decay is not None and (name.startswith("decoder.") or name in decoder_list): | |
group_name = "decoder_decay" | |
this_weight_decay = decoder_decay | |
else: | |
group_name = "decay" | |
this_weight_decay = weight_decay | |
# Assign layer ID for LR scaling | |
skip_scale = False | |
if get_num_layer is not None: | |
layer_id = get_num_layer(name) | |
group_name = "layer_%d_%s" % (layer_id, group_name) | |
if name in no_lr_scale_list: | |
skip_scale = True | |
group_name = f'{group_name}_no_lr_scale' | |
else: | |
layer_id = None | |
if group_name not in parameter_group_names: | |
if get_layer_scale is not None and not skip_scale: | |
scale = get_layer_scale(layer_id) | |
else: | |
scale = 1. | |
parameter_group_names[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
return list(parameter_group_vars.values()) | |
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): | |
""" | |
Model can either be a single nn.Module, or a dictionary with {'model': model, 'balancer': balancer}. | |
""" | |
opt_lower = args.opt.lower() | |
weight_decay = args.weight_decay | |
try: | |
decoder_decay = args.decoder_decay | |
except: | |
decoder_decay = None | |
try: | |
no_lr_scale_list = args.no_lr_scale_list.split('-') | |
except: | |
no_lr_scale_list = [] | |
def get_parameters(m): | |
if weight_decay and filter_bias_and_bn: | |
skip = {} | |
if skip_list is not None: | |
skip = skip_list | |
elif hasattr(m, 'no_weight_decay'): | |
skip = m.no_weight_decay() | |
decoder={} | |
if hasattr(m, 'decoder_weight_decay'): | |
decoder = m.decoder_weight_decay() | |
parameters = get_parameter_groups(m, weight_decay, skip, get_num_layer, get_layer_scale, decoder_decay, decoder, no_lr_scale_list) | |
wd = 0. | |
else: | |
parameters = m.parameters() | |
wd = weight_decay | |
return parameters, wd | |
if isinstance(model, torch.nn.Module): | |
parameters, weight_decay = get_parameters(model) | |
elif isinstance(model, dict): | |
print("WARNING: Weight decay assignment is skipped. All layers are assigned a weight decay value." ) | |
parameters = [ | |
{ | |
"params": [p for n, p in model['model'].named_parameters() | |
if p.requires_grad], | |
"lr_scale": 1., | |
}, | |
{ | |
"params": [p for n, p in model['balancer'].named_parameters() | |
if p.requires_grad], | |
"lr_scale": args.balancer_lr_scale, | |
}, | |
] | |
opt_args = dict(lr=args.lr, weight_decay=weight_decay) | |
if hasattr(args, 'opt_eps') and args.opt_eps is not None: | |
opt_args['eps'] = args.opt_eps | |
if hasattr(args, 'opt_betas') and args.opt_betas is not None: | |
opt_args['betas'] = args.opt_betas | |
print("optimizer settings:", opt_args) | |
opt_split = opt_lower.split('_') | |
opt_lower = opt_split[-1] | |
if opt_lower == 'sgd' or opt_lower == 'nesterov': | |
opt_args.pop('eps', None) | |
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
elif opt_lower == 'momentum': | |
opt_args.pop('eps', None) | |
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) | |
elif opt_lower == 'adam': | |
optimizer = optim.Adam(parameters, **opt_args) | |
elif opt_lower == 'adamw': | |
optimizer = optim.AdamW(parameters, **opt_args) | |
else: | |
assert False and "Invalid optimizer" | |
raise ValueError | |
return optimizer |