aroraaman's picture
Add all of `fourm`
3424266
raw
history blame
18.8 kB
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from .fm_utils import build_1d_sincos_posemb, build_2d_sincos_posemb, pair
class SequenceEncoderEmbedding(nn.Module):
"""Embedding module for encoding sequence inputs, like captions or a sequence of objects.
Args:
vocab_size: Vocabulary size
max_length: Maximum number of tokens in the sequence
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings
max_sincos_pos_emb: Maximum allowed length for sin-cos positional embeddings
padding_idx: Padding index for word embedding
"""
def __init__(self,
vocab_size: int,
max_length: int,
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
max_sincos_pos_emb: int = 512,
padding_idx: int = 0,
):
super().__init__()
self.vocab_size = vocab_size
self.max_length = max_length
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.padding_idx = padding_idx
self.max_sincos_pos_emb = max_sincos_pos_emb
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of embedding module that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
if self.sincos_pos_emb:
if self.max_length > self.max_sincos_pos_emb:
raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}")
pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length]
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Token embedding
self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens,
padding_idx=self.padding_idx)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d : Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Forward pass through embedding module, transforming sequence of ids to sequence of embeddings.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following keys:
- 'tensor' (torch.Tensor): Input token sequence for each batch. Shape (B, L) where B is the batch size and L is the sequence length.
- 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).
Returns:
Dict[str, torch.Tensor]: Modality dict with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the embedding dimension.
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, L, D).
"""
ids = d['tensor']
B = ids.shape[0]
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
# Map to embedding
x = self.token_emb(ids)
expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B)
# Input pos encoding
input_mask = d['input_mask']
input_pos_id = (~input_mask).int().cumsum(dim=1) - 1
input_pos_id[input_mask] = 0
input_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(input_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2]))
input_pos_emb[input_mask] = 0
x_emb = input_pos_emb + self.mod_emb
d['x'] = x
d['emb'] = x_emb
return d
class ImageTokenEncoderEmbedding(nn.Module):
"""Embedding module for tokenized spatial inputs.
Args:
vocab_size: Vocabulary size
patch_size: Int or tuple of the patch size over the full image size.
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
image_size: Default image size. Used to initialize size of positional embeddings.
"""
def __init__(self,
vocab_size: int,
patch_size: Union[int, Tuple[int,int]] = 16,
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
image_size: Union[int, Tuple[int]] = 224,
**kwargs):
super().__init__()
self.vocab_size = vocab_size
self.patch_size = pair(patch_size)
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.image_size = pair(image_size)
self.num_patches = (self.image_size[0] // patch_size) * (self.image_size[1] // patch_size)
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of module that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // self.patch_size[0]
w_posemb = self.image_size[1] // self.patch_size[1]
if self.sincos_pos_emb:
pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Token embedding
self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Forward pass through embedding module, transforming image tokens to a sequence of embeddings.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following key:
- 'tensor' (torch.Tensor): Input image tokens for each batch. Shape (B, H, W) where B is the batch size, and H, W are height and width of the tokenized image. - 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).
Returns:
Dict[str, torch.Tensor]: Modality dictionary with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, H*W, D).
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, H*W, D).
"""
ids = d['tensor']
B = ids.shape[0]
ids = ids.reshape(B, -1)
# Map to embedding
x = self.token_emb(ids)
# Create positional embedding + modality embedding
x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B)
d['x'] = x
d['emb'] = x_emb
return d
class ImageEncoderEmbedding(nn.Module):
"""Embedding module for spatial inputs, like images or feature maps.
Creates tokens from patches over the image.
This adapter / embedding differs from the one of MultiMAE by taking as input a dict and
separating positional embeddings and modality embeddings from the input projection
Input projection is 'x', posemb + modemb is 'emb'
Args:
num_channels: Number of input channels of the image/feature map
patch_size: Int or tuple of the patch size over the full image size.
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
image_size: Default image size. Used to initialize size of positional embeddings.
"""
def __init__(self,
num_channels: int,
patch_size: Union[int, Tuple[int,int]],
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
image_size: Union[int, Tuple[int]] = 224):
super().__init__()
self.num_channels = num_channels
self.patch_size = pair(patch_size)
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.image_size = pair(image_size)
self.num_patches = (self.image_size[0] // patch_size) * (self.image_size[1] // patch_size)
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of encoder that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // self.patch_size[0]
w_posemb = self.image_size[1] // self.patch_size[1]
if self.sincos_pos_emb:
pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Image -> tokens projection
# No bias term here, so modality embedding fully comes from self.mod_emb
self.proj = nn.Linear(self.num_channels * self.patch_size[0] * self.patch_size[1], self.dim_tokens, bias=False)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Forward pass through embedding module, transforming image to sequence of tokens.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following key:
- 'tensor' (torch.Tensor): Input image for each batch. Shape (B, C, H, W) where B is the batch size, C is the number of channels, and H, W are height and width of the image.
Returns:
Dict[str, torch.Tensor]: Modality dict with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, (H / PH) * (W / PW), D), where PH and PW are the patch sizes
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, (H / PH) * (W / PW), D)
"""
x = d['tensor']
B, C, H, W = x.shape
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
assert (H % self.patch_size[0] == 0) and (W % self.patch_size[1] == 0), f'Image sizes {H}x{W} must be divisible by patch sizes {self.patch_size[0]}x{self.patch_size[1]}'
# Create patches [B, C, H, W] -> [B, (H*W), C]
x_patch = self.proj(rearrange(x, 'b d (nh ph) (nw pw) -> b (nh nw) (ph pw d)', ph=self.patch_size[0], pw=self.patch_size[1]))
# Create positional embedding + modality embedding
x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B)
d['x'] = x_patch
d['emb'] = x_emb
return d
class SequenceEmbEncoderEmbedding(nn.Module):
"""Adapter for sequence emb inputs, like T5-XXL, CLIP text embeddings.
Args:
max_length: Maximum number of tokens in the sequence
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings
padding_idx: Padding index for word embedding
orig_emb_dim: Dimension of original embeddings
bottleneck_dim: Dimension of bottleneck layer
use_bottleneck: Set to True to use bottleneck layer
"""
def __init__(self,
max_length: int,
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
max_sincos_pos_emb: int = 512,
padding_idx: int = 0,
orig_emb_dim: int = 4096,
bottleneck_dim: int = 64,
use_bottleneck: bool = False,
):
super().__init__()
self.max_length = max_length
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.padding_idx = padding_idx
self.max_sincos_pos_emb = max_sincos_pos_emb
self.orig_emb_dim = orig_emb_dim
self.use_bottleneck = use_bottleneck
if self.use_bottleneck:
self.bottleneck_dim = bottleneck_dim
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of embedding module that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
if self.sincos_pos_emb:
if self.max_length > self.max_sincos_pos_emb:
raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}")
pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length]
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Token embedding projection
if self.use_bottleneck:
self.emb_proj = nn.Sequential(
nn.Linear(self.orig_emb_dim, self.bottleneck_dim),
nn.Linear(self.bottleneck_dim, self.dim_tokens),
)
else:
self.emb_proj = nn.Linear(self.orig_emb_dim, self.dim_tokens)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d):
"""
Forward pass through embedding module, projecting original embeddings to the Transformer dimension.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following keys:
- 'tensor' (torch.Tensor): Input token sequence for each batch. Shape (B, L, E) where B is the batch size and L is the sequence length, and E is the dimension of the original embeddings.
- 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).
Returns:
Dict[str, torch.Tensor]: Modality dict with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the Transformer embedding dimension.
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, L, D).
"""
orig_emb = d['tensor']
B = orig_emb.shape[0]
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
# Map to embedding
x = self.emb_proj(orig_emb)
expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B)
# Input pos encoding
input_mask = d['input_mask']
input_pos_id = (~input_mask).int().cumsum(dim=1) - 1
input_pos_id[input_mask] = 0
input_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(input_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2]))
input_pos_emb[input_mask] = 0
x_emb = input_pos_emb + self.mod_emb
d['x'] = x
d['emb'] = x_emb
return d