File size: 1,267 Bytes
107566b 5f09a7f 107566b 5f09a7f 107566b 94c1933 107566b 5f09a7f 107566b 94c1933 5f09a7f 107566b 94c1933 107566b 94c1933 107566b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import cv2
import torch
import numpy as np
# Load the YOLOv5 model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# Function to run inference on an image and count objects
def run_inference(image):
# Convert the image from PIL format to a format compatible with OpenCV
image = np.array(image)
# Run YOLOv5 inference
results = model(image)
# Extract detection results
detections = results.pandas().xyxy[0]
# Count objects by category
object_counts = detections['name'].value_counts().to_dict()
# Convert the annotated image from BGR to RGB for display
annotated_image = results.render()[0]
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
return annotated_image, object_counts
# Create the Gradio interface
interface = gr.Interface(
fn=run_inference,
inputs=gr.Image(type="pil"),
outputs=[
gr.Image(type="pil"),
gr.JSON(label="Object Counts") # Add JSON output for object counts
],
title="YOLOv5 Object Detection with Counts",
description="Upload an image to run YOLOv5 object detection, see the annotated results, and view the count of detected objects by category."
)
# Launch the app
interface.launch()
|