arpit13 commited on
Commit
0687d58
·
verified ·
1 Parent(s): 94c1933

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -18,13 +18,16 @@ def run_inference(image):
18
  detections = results.pandas().xyxy[0]
19
 
20
  # Count objects by category
21
- object_counts = detections['name'].value_counts().to_dict()
 
 
 
22
 
23
  # Convert the annotated image from BGR to RGB for display
24
  annotated_image = results.render()[0]
25
  annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
26
 
27
- return annotated_image, object_counts
28
 
29
  # Create the Gradio interface
30
  interface = gr.Interface(
@@ -32,7 +35,7 @@ interface = gr.Interface(
32
  inputs=gr.Image(type="pil"),
33
  outputs=[
34
  gr.Image(type="pil"),
35
- gr.JSON(label="Object Counts") # Add JSON output for object counts
36
  ],
37
  title="YOLOv5 Object Detection with Counts",
38
  description="Upload an image to run YOLOv5 object detection, see the annotated results, and view the count of detected objects by category."
 
18
  detections = results.pandas().xyxy[0]
19
 
20
  # Count objects by category
21
+ object_counts = detections['name'].value_counts()
22
+
23
+ # Create a formatted string to show object counts
24
+ count_text = "\n".join([f"{obj}: {count}" for obj, count in object_counts.items()])
25
 
26
  # Convert the annotated image from BGR to RGB for display
27
  annotated_image = results.render()[0]
28
  annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
29
 
30
+ return annotated_image, count_text
31
 
32
  # Create the Gradio interface
33
  interface = gr.Interface(
 
35
  inputs=gr.Image(type="pil"),
36
  outputs=[
37
  gr.Image(type="pil"),
38
+ gr.Textbox(label="Object Counts", lines=5, interactive=False) # Display counts as text
39
  ],
40
  title="YOLOv5 Object Detection with Counts",
41
  description="Upload an image to run YOLOv5 object detection, see the annotated results, and view the count of detected objects by category."