arsath-sm's picture
Update app.py
95a4f19 verified
raw
history blame
4.63 kB
import streamlit as st
import cv2
import numpy as np
import onnxruntime as ort
from PIL import Image
import tempfile
# Load the ONNX model
@st.cache_resource
def load_model():
return ort.InferenceSession("model.onnx")
ort_session = load_model()
def preprocess_image(image, target_size=(640, 640)):
# Convert PIL Image to numpy array if necessary
if isinstance(image, Image.Image):
image = np.array(image)
# Convert RGB to BGR
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Resize image
image = cv2.resize(image, target_size)
# Normalize
image = image.astype(np.float32) / 255.0
# Transpose for ONNX input
image = np.transpose(image, (2, 0, 1))
# Add batch dimension
image = np.expand_dims(image, axis=0)
return image
def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_threshold=0.45):
# Handle different possible output formats
if isinstance(output, (list, tuple)):
predictions = output[0]
elif isinstance(output, np.ndarray):
predictions = output
else:
raise ValueError(f"Unexpected output type: {type(output)}")
# Reshape if necessary
if len(predictions.shape) == 4:
predictions = predictions.squeeze((0, 1))
elif len(predictions.shape) == 3:
predictions = predictions.squeeze(0)
# Extract boxes, scores, and class_ids
boxes = predictions[:, :4]
scores = predictions[:, 4]
class_ids = predictions[:, 5]
# Filter by confidence
mask = scores > confidence_threshold
boxes = boxes[mask]
scores = scores[mask]
class_ids = class_ids[mask]
# Convert boxes from [x, y, w, h] to [x1, y1, x2, y2]
boxes[:, 2:] += boxes[:, :2]
# Scale boxes to image size
boxes[:, [0, 2]] *= image_shape[1]
boxes[:, [1, 3]] *= image_shape[0]
# Apply NMS
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), confidence_threshold, iou_threshold)
results = []
for i in indices:
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
x1, y1, x2, y2 = map(int, box)
results.append((x1, y1, x2, y2, float(score), int(class_id)))
return results
def process_image(image):
orig_image = image.copy()
processed_image = preprocess_image(image)
# Run inference
inputs = {ort_session.get_inputs()[0].name: processed_image}
outputs = ort_session.run(None, inputs)
results = postprocess_results(outputs, image.shape)
# Draw bounding boxes on the image
for x1, y1, x2, y2, score, class_id in results:
cv2.rectangle(orig_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
label = f"License Plate: {score:.2f}"
cv2.putText(orig_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Create a temporary file to store the processed video
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
processed_frame = process_image(frame)
out.write(cv2.cvtColor(processed_frame, cv2.COLOR_RGB2BGR))
cap.release()
out.release()
return temp_file.name
st.title("License Plate Detection")
uploaded_file = st.file_uploader("Choose an image or video file", type=["jpg", "jpeg", "png", "mp4"])
if uploaded_file is not None:
file_type = uploaded_file.type.split('/')[0]
if file_type == "image":
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Detect License Plates"):
processed_image = process_image(np.array(image))
st.image(processed_image, caption="Processed Image", use_column_width=True)
elif file_type == "video":
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
st.video(tfile.name)
if st.button("Detect License Plates"):
processed_video = process_video(tfile.name)
st.video(processed_video)
st.write("Upload an image or video to detect license plates.")