Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
# Function to load model from Hugging Face Hub | |
def load_model_from_hub(repo_id, filename): | |
model_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
return tf.keras.models.load_model(model_path) | |
# Load models from Hugging Face Hub | |
model1 = load_model_from_hub("arsath-sm/face_classification_model1", "face_classification_model1.h5") | |
model2 = load_model_from_hub("arsath-sm/face_classification_model2", "face_classification_model2.h5") | |
def preprocess_image(image): | |
img = tf.image.resize(image, (224, 224)) # Resize to match the input size of your models | |
img = tf.cast(img, tf.float32) / 255.0 # Normalize pixel values | |
return tf.expand_dims(img, 0) # Add batch dimension | |
def predict_image(image): | |
preprocessed_image = preprocess_image(image) | |
# Make predictions using both models | |
pred1 = model1.predict(preprocessed_image)[0][0] | |
pred2 = model2.predict(preprocessed_image)[0][0] | |
# Prepare results for each model | |
result1 = "Real" if pred1 > 0.5 else "Fake" | |
confidence1 = pred1 if pred1 > 0.5 else 1 - pred1 | |
result2 = "Real" if pred2 > 0.5 else "Fake" | |
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2 | |
return { | |
"Model 1 (ResNet) Prediction": f"{result1} (Confidence: {confidence1:.2f})", | |
"Model 2 (Inception) Prediction": f"{result2} (Confidence: {confidence2:.2f})" | |
} | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(), | |
outputs={ | |
"Model 1 (ResNet) Prediction": gr.Textbox(), | |
"Model 2 (Inception) Prediction": gr.Textbox() | |
}, | |
title="Real vs AI-Generated Face Classification", | |
description="Upload an image to classify whether it's a real face or an AI-generated face using two different models: ResNet-style and Inception-style." | |
) | |
# Launch the app | |
iface.launch() |