Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from huggingface_hub import hf_hub_download, list_repo_files | |
def list_files_in_repo(repo_id): | |
try: | |
files = list_repo_files(repo_id) | |
print(f"Files in {repo_id}:") | |
for file in files: | |
print(file) | |
return files | |
except Exception as e: | |
print(f"Error listing files in {repo_id}: {str(e)}") | |
return [] | |
def load_model_from_hub(repo_id): | |
files = list_files_in_repo(repo_id) | |
model_file = next((f for f in files if f.endswith('.h5') or f.endswith('.keras')), None) | |
if model_file is None: | |
raise ValueError(f"No .h5 or .keras file found in {repo_id}") | |
try: | |
model_path = hf_hub_download(repo_id=repo_id, filename=model_file) | |
return tf.keras.models.load_model(model_path) | |
except Exception as e: | |
print(f"Error loading model from {repo_id}: {str(e)}") | |
raise | |
# Try to load models | |
try: | |
print("Attempting to load Model 1...") | |
model1 = load_model_from_hub("arsath-sm/face_classification_model1") | |
print("Model 1 loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load Model 1: {str(e)}") | |
model1 = None | |
try: | |
print("Attempting to load Model 2...") | |
model2 = load_model_from_hub("arsath-sm/face_classification_model2") | |
print("Model 2 loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load Model 2: {str(e)}") | |
model2 = None | |
def preprocess_image(image): | |
img = tf.convert_to_tensor(image) | |
img = tf.image.resize(img, (150, 150)) | |
img = img / 255.0 | |
return tf.expand_dims(img, 0) | |
def predict_image(image): | |
if model1 is None and model2 is None: | |
return { | |
"Error": "Both models failed to load. Please check the model repositories and try again." | |
} | |
preprocessed_image = preprocess_image(image) | |
results = {} | |
if model1 is not None: | |
pred1 = model1.predict(preprocessed_image)[0][0] | |
result1 = "Real" if pred1 > 0.5 else "Fake" | |
confidence1 = pred1 if pred1 > 0.5 else 1 - pred1 | |
results["Model 1 Prediction"] = f"{result1} (Confidence: {confidence1:.2f})" | |
else: | |
results["Model 1 Prediction"] = "Model failed to load" | |
if model2 is not None: | |
pred2 = model2.predict(preprocessed_image)[0][0] | |
result2 = "Real" if pred2 > 0.5 else "Fake" | |
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2 | |
results["Model 2 Prediction"] = f"{result2} (Confidence: {confidence2:.2f})" | |
else: | |
results["Model 2 Prediction"] = "Model failed to load" | |
return results | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(), | |
outputs={ | |
"Model 1 Prediction": gr.Textbox(), | |
"Model 2 Prediction": gr.Textbox(), | |
"Error": gr.Textbox() | |
}, | |
title="Real vs AI Face Classification", | |
description="Upload an image to classify whether it's a real face or an AI-generated face using two different models." | |
) | |
# Launch the app | |
iface.launch() |