Spaces:
Sleeping
Sleeping
File size: 7,053 Bytes
5e0745f b25e1e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import random
from pricegenerator.PriceGenerator import PriceGenerator, uLogger
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import mplfinance as mpf
import numpy as np
from PIL import Image
import io
from sklearn.preprocessing import StandardScaler
import requests
import time
def download_model():
model_url = "https://huggingface.co/artbreguez/BinaryOptionsXGB/resolve/main/eurusd.pkl?download=true"
response = requests.get(model_url, stream=True)
if response.status_code == 200:
with open('eurusd.pkl', 'wb') as f:
for chunk in response.iter_content(1024):
f.write(chunk)
print("Modelo baixado com sucesso!")
return True
else:
print("Erro ao baixar o modelo:", response.status_code)
return False
download_success = download_model()
if download_success:
with open('eurusd.pkl', 'rb') as f:
content = f.read()
with open('eurusd.pkl', 'rb') as f:
model = pickle.load(f)
else:
print("Download do modelo falhou.")
def generate_candle_image(df, predicao):
df['DateTime'] = pd.to_datetime(df['DateTime'])
df.set_index('DateTime', inplace=True)
prox_candle = pd.DataFrame(index=[df.index[-1] + pd.Timedelta(hours=1)])
prox_candle['Open'] = df['Close'].iloc[-1]
if predicao[0] == 1: # Predição positiva
prox_candle['Close'] = prox_candle['Open'] + 0.01
prox_candle['High'] = prox_candle['Open'] + 0.01
prox_candle['Low'] = prox_candle['Open']
else: # Predição negativa
prox_candle['Close'] = prox_candle['Open'] - 0.01
prox_candle['High'] = prox_candle['Open']
prox_candle['Low'] = prox_candle['Open'] - 0.01
prox_candle['Volume'] = 0
df_combined = pd.concat([df, prox_candle])
nans = [float('nan')]*len(df_combined)
cdf = pd.DataFrame(dict(Open=nans, High=nans, Low=nans, Close=nans), index=df_combined.index)
cdf.loc[df_combined.index[-1]] = df_combined.loc[df_combined.index[-1]]
mc = mpf.make_marketcolors(up='green', down='red')
s = mpf.make_mpf_style(marketcolors=mc)
fig, axlist = mpf.plot(df_combined, type='candle', volume=True, returnfig=True, ylabel_lower='Volume', title='EUR/USD Price Chart')
mpf.plot(cdf, type='candle', style=s, ax=axlist[0])
img_bytes = io.BytesIO()
plt.savefig(img_bytes, format='png')
img_bytes.seek(0)
img_pil = Image.open(img_bytes)
return img_pil
def predict(X_2d):
return model.predict(X_2d)
def generate_array(df):
features = df.drop(columns=['DateTime'])
scaler = StandardScaler()
normalized_features = scaler.fit_transform(features)
df_normalized = pd.DataFrame(normalized_features, columns=features.columns, index=df.index)
X = df_normalized.iloc[-1].values # Obtém apenas os valores dos recursos normalizados
X_2d = np.array(X).reshape(1, -1)
return X_2d
def calculate_bollinger_bands(df, period=20):
df['SMA'] = df['Close'].rolling(window=period).mean()
df['STD'] = df['Close'].rolling(window=period).std()
df['Upper'] = df['SMA'] + (2 * df['STD'])
df['Lower'] = df['SMA'] - (2 * df['STD'])
return df
def calculate_stochastic_oscillator(df, period=14):
low_min = df['Low'].rolling(window=period).min()
high_max = df['High'].rolling(window=period).max()
close_diff = df['Close'] - low_min
high_diff = high_max - low_min
stoch = close_diff / high_diff * 100
df['Stochastic'] = stoch
return df
def calculate_rsi(df, period=14):
diff = df['Close'].diff()
gain = diff.where(diff > 0, 0)
loss = -diff.where(diff < 0, 0)
ema_gain = gain.ewm(alpha=1/period, min_periods=period, adjust=False).mean()
ema_loss = loss.ewm(alpha=1/period, min_periods=period, adjust=False).mean()
rs = ema_gain / ema_loss
rsi = 100 - (100 / (1 + rs))
df['RSI'] = rsi
return df
def process_data(file_path):
with open(file_path, 'r') as f:
data = f.readlines()
data = [line.strip().split(',') for line in data]
df = pd.DataFrame(data, columns=['Date', 'Time', 'Open', 'High', 'Low', 'Close', 'Volume'])
numeric_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
df[numeric_columns] = df[numeric_columns].astype(float)
df['DateTime'] = pd.to_datetime(df['Date'] + ' ' + df['Time'])
df.set_index('DateTime', inplace=True)
df = calculate_bollinger_bands(df)
df = calculate_stochastic_oscillator(df)
df = calculate_rsi(df)
df.drop(['Date', 'Time', 'STD'], axis=1, inplace=True)
processed_file_path = file_path.replace('.csv', '_processed.csv')
df.to_csv(processed_file_path)
return df
def generate_graph_data():
uLogger.setLevel(0)
priceModel = PriceGenerator()
priceModel.precision = 5 # 5 casas decimais para maior precisão
priceModel.ticker = "EURUSD" # par de moedas EUR/USD
priceModel.timeframe = timedelta(hours=1) # intervalo de tempo entre os candles, 1 dia
priceModel.timeStart = datetime.today() - timedelta(days=1) # dados do último ano
priceModel.horizon = 24 # 24 candles, correspondendo a um dia de dados
priceModel.maxClose = 1.25 # Maior preço de fechamento, similar aos preços do EUR/USD
priceModel.minClose = 1.05 # Menor preço de fechamento, similar aos preços do EUR/USD
priceModel.initClose = None # Preço inicial aleatório dentro do intervalo (minClose, maxClose)
priceModel.maxOutlier = 0.01 # Máximo desvio para outliers, similar aos preços do EUR/USD
priceModel.maxCandleBody = None # Sem limite para o tamanho do corpo dos candles
priceModel.maxVolume = 500000 # Volume máximo, valor arbitrário
priceModel.upCandlesProb = 0.5 # Probabilidade de candle de alta de 50%
priceModel.outliersProb = 0.03 # Probabilidade de outliers de 3%
priceModel.trendDeviation = 0.0005 # Desvio para definir tendência, valor pequeno
priceModel.zigzag = 0.01 # Diferença entre pontos do indicador ZigZag
priceModel._chartTitle = "EUR/USD Price Chart" # Título do gráfico
priceModel.Generate()
priceModel.SaveToFile(fileName="eur_usd_prices.csv")
def generate_predictions():
generate_graph_data()
df = process_data('eur_usd_prices.csv')
df = pd.read_csv('eur_usd_prices_processed.csv')
x_d2 = generate_array(df)
prediction = predict(x_d2)
image = generate_candle_image(df, prediction)
return image
outputs = gr.Image(type='pil', label='label')
inputs = None
title = "📈 Binary Options Predictor 📈"
description = """
<div>
<a style="display:inline-block" href='https://github.com/suno-ai/bark'><img src='https://img.shields.io/github/stars/suno-ai/bark?style=social' /></a>
This tool generates a simulated candlestick chart for EUR/USD. If the last candlestick is green, it indicates an upward trend, while a red candlestick suggests a downward trend.
</div>
"""
gr.Interface(generate_predictions, inputs, outputs, title=title, description=description).launch(debug=False) |