artbreguez's picture
Create app.py
5e0745f verified
raw
history blame
7.07 kB
import random
from pricegenerator.PriceGenerator import PriceGenerator, uLogger
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import mplfinance as mpf
import numpy as np
from PIL import Image
import io
from sklearn.preprocessing import StandardScaler
import requests
import time
def download_model():
# URL do arquivo do modelo
model_url = "https://huggingface.co/artbreguez/BinaryOptionsXGB/resolve/main/eurusd.pkl?download=true"
# Baixar o arquivo do modelo
response = requests.get(model_url, stream=True)
# Verificar se o download foi bem-sucedido
if response.status_code == 200:
# Salvar o arquivo
with open('eurusd.pkl', 'wb') as f:
for chunk in response.iter_content(1024):
f.write(chunk)
print("Modelo baixado com sucesso!")
return True
else:
print("Erro ao baixar o modelo:", response.status_code)
return False
# Realizar o download do modelo
download_success = download_model()
if download_success:
with open('eurusd.pkl', 'rb') as f:
content = f.read()
with open('eurusd.pkl', 'rb') as f:
model = pickle.load(f)
else:
print("Download do modelo falhou.")
# model = load_model()
def generate_candle_image(df, predicao):
df['DateTime'] = pd.to_datetime(df['DateTime'])
df.set_index('DateTime', inplace=True)
prox_candle = pd.DataFrame(index=[df.index[-1] + pd.Timedelta(hours=1)])
prox_candle['Open'] = df['Close'].iloc[-1]
if predicao[0] == 1: # Predição positiva
prox_candle['Close'] = prox_candle['Open'] + 0.01
prox_candle['High'] = prox_candle['Open'] + 0.01
prox_candle['Low'] = prox_candle['Open']
else: # Predição negativa
prox_candle['Close'] = prox_candle['Open'] - 0.01
prox_candle['High'] = prox_candle['Open']
prox_candle['Low'] = prox_candle['Open'] - 0.01
prox_candle['Volume'] = 0
df_combined = pd.concat([df, prox_candle])
nans = [float('nan')]*len(df_combined)
cdf = pd.DataFrame(dict(Open=nans, High=nans, Low=nans, Close=nans), index=df_combined.index)
cdf.loc[df_combined.index[-1]] = df_combined.loc[df_combined.index[-1]]
mc = mpf.make_marketcolors(up='green', down='red')
s = mpf.make_mpf_style(marketcolors=mc)
fig, axlist = mpf.plot(df_combined, type='candle', volume=True, returnfig=True, ylabel_lower='Volume', title='EUR/USD Price Chart')
mpf.plot(cdf, type='candle', style=s, ax=axlist[0])
img_bytes = io.BytesIO()
plt.savefig(img_bytes, format='png')
img_bytes.seek(0)
img_pil = Image.open(img_bytes)
return img_pil
def predict(X_2d):
return model.predict(X_2d)
def generate_array(df):
features = df.drop(columns=['DateTime'])
scaler = StandardScaler()
normalized_features = scaler.fit_transform(features)
df_normalized = pd.DataFrame(normalized_features, columns=features.columns, index=df.index)
X = df_normalized.iloc[-1].values # Obtém apenas os valores dos recursos normalizados
X_2d = np.array(X).reshape(1, -1)
return X_2d
def calculate_bollinger_bands(df, period=20):
df['SMA'] = df['Close'].rolling(window=period).mean()
df['STD'] = df['Close'].rolling(window=period).std()
df['Upper'] = df['SMA'] + (2 * df['STD'])
df['Lower'] = df['SMA'] - (2 * df['STD'])
return df
def calculate_stochastic_oscillator(df, period=14):
low_min = df['Low'].rolling(window=period).min()
high_max = df['High'].rolling(window=period).max()
close_diff = df['Close'] - low_min
high_diff = high_max - low_min
stoch = close_diff / high_diff * 100
df['Stochastic'] = stoch
return df
def calculate_rsi(df, period=14):
diff = df['Close'].diff()
gain = diff.where(diff > 0, 0)
loss = -diff.where(diff < 0, 0)
ema_gain = gain.ewm(alpha=1/period, min_periods=period, adjust=False).mean()
ema_loss = loss.ewm(alpha=1/period, min_periods=period, adjust=False).mean()
rs = ema_gain / ema_loss
rsi = 100 - (100 / (1 + rs))
df['RSI'] = rsi
return df
def process_data(file_path):
with open(file_path, 'r') as f:
data = f.readlines()
data = [line.strip().split(',') for line in data]
df = pd.DataFrame(data, columns=['Date', 'Time', 'Open', 'High', 'Low', 'Close', 'Volume'])
numeric_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
df[numeric_columns] = df[numeric_columns].astype(float)
df['DateTime'] = pd.to_datetime(df['Date'] + ' ' + df['Time'])
df.set_index('DateTime', inplace=True)
df = calculate_bollinger_bands(df)
df = calculate_stochastic_oscillator(df)
df = calculate_rsi(df)
df.drop(['Date', 'Time', 'STD'], axis=1, inplace=True)
processed_file_path = file_path.replace('.csv', '_processed.csv')
df.to_csv(processed_file_path)
return df
def generate_graph_data():
uLogger.setLevel(0)
priceModel = PriceGenerator()
priceModel.precision = 5 # 5 casas decimais para maior precisão
priceModel.ticker = "EURUSD" # par de moedas EUR/USD
priceModel.timeframe = timedelta(hours=1) # intervalo de tempo entre os candles, 1 dia
priceModel.timeStart = datetime.today() - timedelta(days=1) # dados do último ano
priceModel.horizon = 24 # 24 candles, correspondendo a um dia de dados
priceModel.maxClose = 1.25 # Maior preço de fechamento, similar aos preços do EUR/USD
priceModel.minClose = 1.05 # Menor preço de fechamento, similar aos preços do EUR/USD
priceModel.initClose = None # Preço inicial aleatório dentro do intervalo (minClose, maxClose)
priceModel.maxOutlier = 0.01 # Máximo desvio para outliers, similar aos preços do EUR/USD
priceModel.maxCandleBody = None # Sem limite para o tamanho do corpo dos candles
priceModel.maxVolume = 500000 # Volume máximo, valor arbitrário
priceModel.upCandlesProb = 0.5 # Probabilidade de candle de alta de 50%
priceModel.outliersProb = 0.03 # Probabilidade de outliers de 3%
priceModel.trendDeviation = 0.0005 # Desvio para definir tendência, valor pequeno
priceModel.zigzag = 0.01 # Diferença entre pontos do indicador ZigZag
priceModel._chartTitle = "EUR/USD Price Chart" # Título do gráfico
priceModel.Generate()
priceModel.SaveToFile(fileName="eur_usd_prices.csv")
def generate_predictions():
generate_graph_data()
df = process_data('eur_usd_prices.csv')
df = pd.read_csv('eur_usd_prices_processed.csv')
x_d2 = generate_array(df)
prediction = predict(x_d2)
image = generate_candle_image(df, prediction)
return image
outputs = gr.Image(type='pil', label='label')
inputs = None
title = "Binary Options Predictor"
description = "This tool generates a simulated candlestick chart for EUR/USD. If the last candlestick is green, it indicates an upward trend, while a red candlestick suggests a downward trend."
gr.Interface(generate_predictions, inputs, outputs, title=title, description=description).launch(debug=True)