Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import json | |
from PIL import Image | |
# Assuming these imports work as expected, but you might need to adjust based on your actual package structure | |
from surya.ocr import run_ocr | |
from surya.detection import batch_detection | |
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from surya.postprocessing.heatmap import draw_polys_on_image | |
# Load models and processors with print statements to confirm loading | |
print("Loading models and processors...") | |
det_model, det_processor = load_det_model(), load_det_processor() | |
rec_model, rec_processor = load_rec_model(), load_rec_processor() | |
print("Models and processors loaded successfully.") | |
# Load language codes | |
print("Loading language codes...") | |
with open("languages.json", "r") as file: | |
languages = json.load(file) | |
language_dict = {name: code for name, code in languages.items()} | |
print(f"Loaded languages: {list(language_dict.keys())}") | |
def ocr_function(img, lang_name): | |
print(f"OCR Function Called with lang_name: {lang_name}") | |
lang_code = language_dict[lang_name] | |
print(f"Language Code: {lang_code}") | |
# Ensure langs is a list of language codes, not a list of lists | |
predictions = run_ocr([img], [lang_code], det_model, det_processor, rec_model, rec_processor) # Corrected | |
print(f"Predictions: {predictions}") | |
if predictions: | |
img_with_text = draw_polys_on_image(predictions[0]["polys"], img) | |
return img_with_text, predictions[0]["text"] | |
else: | |
return img, "No text detected" | |
def text_line_detection_function(img): | |
print("Text Line Detection Function Called") | |
preds = batch_detection([img], det_model, det_processor)[0] # Assuming this returns a DetectionResult object | |
print(f"Detection Predictions: {preds}") | |
# Check if preds has an attribute 'bboxes' and use it | |
if hasattr(preds, 'bboxes'): | |
# Assuming draw_polys_on_image can work with the format of bboxes directly or you adapt it accordingly | |
img_with_lines = draw_polys_on_image([bbox.polygon for bbox in preds.bboxes], img) | |
return img_with_lines, preds | |
else: | |
raise AttributeError("DetectionResult object does not have 'bboxes' attribute") | |
with gr.Blocks() as app: | |
gr.Markdown("# Surya OCR and Text Line Detection") | |
with gr.Tab("OCR"): | |
with gr.Column(): | |
ocr_input_image = gr.Image(label="Input Image for OCR", type="pil") | |
ocr_language_selector = gr.Dropdown(label="Select Language for OCR", choices=list(language_dict.keys()), value="English") | |
ocr_run_button = gr.Button("Run OCR") | |
with gr.Column(): | |
ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False) | |
ocr_text_output = gr.TextArea(label="Recognized Text") | |
ocr_run_button.click(fn=ocr_function, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output]) | |
with gr.Tab("Text Line Detection"): | |
with gr.Column(): | |
detection_input_image = gr.Image(label="Input Image for Detection", type="pil") | |
detection_run_button = gr.Button("Run Text Line Detection") | |
with gr.Column(): | |
detection_output_image = gr.Image(label="Detection Output Image", type="pil", interactive=False) | |
detection_json_output = gr.JSON(label="Detection JSON Output") | |
detection_run_button.click(fn=text_line_detection_function, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output]) | |
if __name__ == "__main__": | |
app.launch() | |