Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,288 Bytes
dddb041 b8a701a b46e87b 77b1ab6 b46e87b dddb041 b46e87b dddb041 b46e87b b1b4f10 a146eda a166abf 3733cf2 ccde57b b46e87b b1b4f10 ccde57b b8a701a b46e87b 77b1ab6 b1b4f10 b46e87b a146eda b1b4f10 b46e87b 0347515 db08793 b46e87b 77b1ab6 b46e87b 77b1ab6 b46e87b a146eda b46e87b 322db57 77b1ab6 b46e87b 9f29ad9 b46e87b b1b4f10 b46e87b 538d554 77b1ab6 b46e87b 77b1ab6 057bc07 b46e87b 77b1ab6 a200bb2 b46e87b 77b1ab6 23f25b9 b46e87b 77b1ab6 23f25b9 77b1ab6 c133494 b1b4f10 b46e87b 057bc07 77b1ab6 057bc07 c03b3ba b46e87b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import json
import logging
import torch
from PIL import Image
from diffusers import (
DiffusionPipeline,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler
)
import spaces
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Load LoRA weights
pipe.load_lora_weights(lora_path)
# Set scheduler
scheduler_config = pipe.scheduler.config
if scheduler == "DPM++ 2M":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
elif scheduler == "DPM++ 2M Karras":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM++ 2M SDE":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
elif scheduler == "DPM++ 2M SDE Karras":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
elif scheduler == "DPM++ SDE":
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
elif scheduler == "DPM++ SDE Karras":
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM2":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
elif scheduler == "DPM2 Karras":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DPM2 a":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "DPM2 a Karras":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "Euler a":
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "Heun":
pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "LMS":
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
elif scheduler == "LMS Karras":
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
elif scheduler == "DEIS":
pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
elif scheduler == "UniPC":
pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
# Set random seed for reproducibility
generator = torch.Generator(device="cuda").manual_seed(seed)
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lora_scale},
).images[0]
# Unload LoRA weights
pipe.unload_lora_weights()
return image
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# artificialguybr LoRA Portfolio")
gr.Markdown(
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
"**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
"Special thanks to Hugging Face for their Diffusers library and Spaces platform."
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=2):
result = gr.Image(label="Generated Image", height=768)
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=2
)
with gr.Row():
with gr.Column():
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
selected_info = gr.Markdown("")
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
scheduler = gr.Dropdown(
label="Scheduler",
choices=[
"DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
"DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
"Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
],
value="DPM++ 2M SDE Karras"
)
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
generate_button.click(
fn=run_lora,
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale],
outputs=[result]
)
app.queue()
app.launch()
|