File size: 14,742 Bytes
cdbd3dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a96035
cdbd3dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
"""
Code from https://github.com/ondyari/FaceForensics
Author: Andreas Rössler
"""
import os
import argparse


import torch
# import pretrainedmodels
import torch.nn as nn
import torch.nn.functional as F
# from lib.nets.xception import xception
import math
import torchvision

# import math
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch.nn import init

pretrained_settings = {
    'xception': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth',
            'input_space': 'RGB',
            'input_size': [3, 299, 299],
            'input_range': [0, 1],
            'mean': [0.5, 0.5, 0.5],
            'std': [0.5, 0.5, 0.5],
            'num_classes': 1000,
            'scale': 0.8975  # The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
        }
    }
}

PRETAINED_WEIGHT_PATH = 'xception-b5690688.pth'

class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
        super(SeparableConv2d, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size,
                               stride, padding, dilation, groups=in_channels, bias=bias)
        self.pointwise = nn.Conv2d(
            in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)

    def forward(self, x):
        x = self.conv1(x)
        x = self.pointwise(x)
        return x


class Block(nn.Module):
    def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
        super(Block, self).__init__()

        if out_filters != in_filters or strides != 1:
            self.skip = nn.Conv2d(in_filters, out_filters,
                                  1, stride=strides, bias=False)
            self.skipbn = nn.BatchNorm2d(out_filters)
        else:
            self.skip = None

        self.relu = nn.ReLU(inplace=True)
        rep = []

        filters = in_filters
        if grow_first:
            rep.append(self.relu)
            rep.append(SeparableConv2d(in_filters, out_filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))
            filters = out_filters

        for i in range(reps-1):
            rep.append(self.relu)
            rep.append(SeparableConv2d(filters, filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(filters))

        if not grow_first:
            rep.append(self.relu)
            rep.append(SeparableConv2d(in_filters, out_filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))

        if not start_with_relu:
            rep = rep[1:]
        else:
            rep[0] = nn.ReLU(inplace=False)

        if strides != 1:
            rep.append(nn.MaxPool2d(3, strides, 1))
        self.rep = nn.Sequential(*rep)

    def forward(self, inp):
        x = self.rep(inp)

        if self.skip is not None:
            skip = self.skip(inp)
            skip = self.skipbn(skip)
        else:
            skip = inp

        x += skip
        return x


def add_gaussian_noise(ins, mean=0, stddev=0.2):
    noise = ins.data.new(ins.size()).normal_(mean, stddev)
    return ins + noise


class Xception(nn.Module):
    """
    Xception optimized for the ImageNet dataset, as specified in
    https://arxiv.org/pdf/1610.02357.pdf
    """

    def __init__(self, num_classes=1000, inc=3):
        """ Constructor
        Args:
            num_classes: number of classes
        """
        super(Xception, self).__init__()
        self.num_classes = num_classes

        # Entry flow
        self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
        self.bn2 = nn.BatchNorm2d(64)
        # do relu here

        self.block1 = Block(
            64, 128, 2, 2, start_with_relu=False, grow_first=True)
        self.block2 = Block(
            128, 256, 2, 2, start_with_relu=True, grow_first=True)
        self.block3 = Block(
            256, 728, 2, 2, start_with_relu=True, grow_first=True)

        # middle flow
        self.block4 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block5 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block6 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block7 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)

        self.block8 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block9 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block10 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block11 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)

        # Exit flow
        self.block12 = Block(
            728, 1024, 2, 2, start_with_relu=True, grow_first=False)

        self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(1536)

        # do relu here
        self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(2048)

        self.fc = nn.Linear(2048, num_classes)

        # #------- init weights --------
        # for m in self.modules():
        #     if isinstance(m, nn.Conv2d):
        #         n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        #         m.weight.data.normal_(0, math.sqrt(2. / n))
        #     elif isinstance(m, nn.BatchNorm2d):
        #         m.weight.data.fill_(1)
        #         m.bias.data.zero_()
        # #-----------------------------
    def fea_part1_0(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        return x

    def fea_part1_1(self, x):

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        return x

    def fea_part1(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        return x

    def fea_part2(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)

        return x

    def fea_part3(self, x):
        x = self.block4(x)
        x = self.block5(x)
        x = self.block6(x)
        x = self.block7(x)

        return x

    def fea_part4(self, x):
        x = self.block8(x)
        x = self.block9(x)
        x = self.block10(x)
        x = self.block11(x)

        return x

    def fea_part5(self, x):
        x = self.block12(x)

        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu(x)

        x = self.conv4(x)
        x = self.bn4(x)

        return x

    def features(self, input):
        x = self.fea_part1(input)

        x = self.fea_part2(x)
        x = self.fea_part3(x)
        x = self.fea_part4(x)

        x = self.fea_part5(x)
        return x

    def classifier(self, features):
        x = self.relu(features)

        x = F.adaptive_avg_pool2d(x, (1, 1))
        x = x.view(x.size(0), -1)
        out = self.last_linear(x)
        return out, x

    def forward(self, input):
        x = self.features(input)
        out, x = self.classifier(x)
        return out, x


def xception(num_classes=1000, pretrained='imagenet', inc=3):
    model = Xception(num_classes=num_classes, inc=inc)
    if pretrained:
        settings = pretrained_settings['xception'][pretrained]
        assert num_classes == settings['num_classes'], \
            "num_classes should be {}, but is {}".format(
                settings['num_classes'], num_classes)

        model = Xception(num_classes=num_classes)
        model.load_state_dict(model_zoo.load_url(settings['url']))

        model.input_space = settings['input_space']
        model.input_size = settings['input_size']
        model.input_range = settings['input_range']
        model.mean = settings['mean']
        model.std = settings['std']

    # TODO: ugly
    model.last_linear = model.fc
    del model.fc
    return model


class TransferModel(nn.Module):
    """
    Simple transfer learning model that takes an imagenet pretrained model with
    a fc layer as base model and retrains a new fc layer for num_out_classes
    """

    def __init__(self, modelchoice, num_out_classes=2, dropout=0.0,
                 weight_norm=False, return_fea=False, inc=3):
        super(TransferModel, self).__init__()
        self.modelchoice = modelchoice
        self.return_fea = return_fea

        if modelchoice == 'xception':

            def return_pytorch04_xception(pretrained=True):
                # Raises warning "src not broadcastable to dst" but thats fine
                model = xception(pretrained=False)
                if pretrained:
                    # Load model in torch 0.4+
                    model.fc = model.last_linear
                    del model.last_linear
                    state_dict = torch.load(
                        PRETAINED_WEIGHT_PATH)
                    for name, weights in state_dict.items():
                        if 'pointwise' in name:
                            state_dict[name] = weights.unsqueeze(
                                -1).unsqueeze(-1)
                    model.load_state_dict(state_dict)
                    model.last_linear = model.fc
                    del model.fc
                return model

            self.model = return_pytorch04_xception()
            # Replace fc
            num_ftrs = self.model.last_linear.in_features
            if not dropout:
                if weight_norm:
                    print('Using Weight_Norm')
                    self.model.last_linear = nn.utils.weight_norm(
                        nn.Linear(num_ftrs, num_out_classes), name='weight')
                self.model.last_linear = nn.Linear(num_ftrs, num_out_classes)
            else:
                print('Using dropout', dropout)
                if weight_norm:
                    print('Using Weight_Norm')
                    self.model.last_linear = nn.Sequential(
                        nn.Dropout(p=dropout),
                        nn.utils.weight_norm(
                            nn.Linear(num_ftrs, num_out_classes), name='weight')
                    )

                self.model.last_linear = nn.Sequential(
                    nn.Dropout(p=dropout),
                    nn.Linear(num_ftrs, num_out_classes)
                )

            if inc != 3:
                self.model.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
                nn.init.xavier_normal(self.model.conv1.weight.data, gain=0.02)

        elif modelchoice == 'resnet50' or modelchoice == 'resnet18':
            if modelchoice == 'resnet50':
                self.model = torchvision.models.resnet50(pretrained=True)
            if modelchoice == 'resnet18':
                self.model = torchvision.models.resnet18(pretrained=True)
            # Replace fc
            num_ftrs = self.model.fc.in_features
            if not dropout:
                self.model.fc = nn.Linear(num_ftrs, num_out_classes)
            else:
                self.model.fc = nn.Sequential(
                    nn.Dropout(p=dropout),
                    nn.Linear(num_ftrs, num_out_classes)
                )
        else:
            raise Exception('Choose valid model, e.g. resnet50')

    def set_trainable_up_to(self, boolean=False, layername="Conv2d_4a_3x3"):
        """
        Freezes all layers below a specific layer and sets the following layers
        to true if boolean else only the fully connected final layer
        :param boolean:
        :param layername: depends on lib, for inception e.g. Conv2d_4a_3x3
        :return:
        """
        # Stage-1: freeze all the layers
        if layername is None:
            for i, param in self.model.named_parameters():
                param.requires_grad = True
                return
        else:
            for i, param in self.model.named_parameters():
                param.requires_grad = False
        if boolean:
            # Make all layers following the layername layer trainable
            ct = []
            found = False
            for name, child in self.model.named_children():
                if layername in ct:
                    found = True
                    for params in child.parameters():
                        params.requires_grad = True
                ct.append(name)
            if not found:
                raise NotImplementedError('Layer not found, cant finetune!'.format(
                    layername))
        else:
            if self.modelchoice == 'xception':
                # Make fc trainable
                for param in self.model.last_linear.parameters():
                    param.requires_grad = True

            else:
                # Make fc trainable
                for param in self.model.fc.parameters():
                    param.requires_grad = True

    def forward(self, x):
        out, x = self.model(x)
        if self.return_fea:
            return out, x
        else:
            return out

    def features(self, x):
        x = self.model.features(x)
        return x

    def classifier(self, x):
        out, x = self.model.classifier(x)
        return out, x


def model_selection(modelname, num_out_classes,
                    dropout=None):
    """
    :param modelname:
    :return: model, image size, pretraining<yes/no>, input_list
    """
    if modelname == 'xception':
        return TransferModel(modelchoice='xception',
                             num_out_classes=num_out_classes), 299, \
            True, ['image'], None
    elif modelname == 'resnet18':
        return TransferModel(modelchoice='resnet18', dropout=dropout,
                             num_out_classes=num_out_classes), \
            224, True, ['image'], None
    else:
        raise NotImplementedError(modelname)


if __name__ == '__main__':
    model = TransferModel('xception', dropout=0.5)
    print(model)
    # model = model.cuda()
    # from torchsummary import summary
    # input_s = (3, image_size, image_size)
    # print(summary(model, input_s))
    dummy = torch.rand(10, 3, 256, 256)
    out = model(dummy)
    print(out.size())
    x = model.features(dummy)
    out, x = model.classifier(x)
    print(out.size())
    print(x.size())