Face-forgery-detection / detect_from_videos.py
asdasdasdasd's picture
Update detect_from_videos.py
26d4625
# coding: utf-8
import os
import argparse
from os.path import join
import cv2
import dlib
import torch
import torch.nn as nn
from PIL import Image as pil_image
from tqdm import tqdm
from model_core import Two_Stream_Net
from torchvision import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
map_location=torch.device('cpu')
xception_default_data_transforms_256 = {
'train': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5]*3, [0.5]*3)
]),
'val': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5] * 3, [0.5] * 3)
]),
'test': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5] * 3, [0.5] * 3)
]),
}
def get_boundingbox(face, width, height, scale=1.3, minsize=None):
"""
Expects a dlib face to generate a quadratic bounding box.
:param face: dlib face class
:param width: frame width
:param height: frame height
:param scale: bounding box size multiplier to get a bigger face region
:param minsize: set minimum bounding box size
:return: x, y, bounding_box_size in opencv form
"""
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * scale)
if minsize:
if size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb // 2), 0)
y1 = max(int(center_y - size_bb // 2), 0)
# Check for too big bb size for given x, y
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def preprocess_image(image, cuda=True):
"""
Preprocesses the image such that it can be fed into our network.
During this process we envoke PIL to cast it into a PIL image.
:param image: numpy image in opencv form (i.e., BGR and of shape
:return: pytorch tensor of shape [1, 3, image_size, image_size], not
necessarily casted to cuda
"""
# Revert from BGR
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Preprocess using the preprocessing function used during training and
# casting it to PIL image
preprocess = xception_default_data_transforms_256['test']
preprocessed_image = preprocess(pil_image.fromarray(image))
# Add first dimension as the network expects a batch
preprocessed_image = preprocessed_image.unsqueeze(0)
if cuda:
preprocessed_image = preprocessed_image.cuda()
return preprocessed_image
def predict_with_model(image, model, post_function=nn.Softmax(dim=1),
cuda=True):
"""
Predicts the label of an input image. Preprocesses the input image and
casts it to cuda if required
:param image: numpy image
:param model: torch model with linear layer at the end
:param post_function: e.g., softmax
:param cuda: enables cuda, must be the same parameter as the model
:return: prediction (1 = fake, 0 = real)
"""
# Preprocess
preprocessed_image = preprocess_image(image, cuda).cuda()
# print(preprocessed_image.shape)
# Model prediction
output = model(preprocessed_image)
# print(output)
# output = post_function(output[0])
# Cast to desired
_, prediction = torch.max(output[0], 1) # argmax
prediction = float(prediction.cpu().numpy())
# print(prediction)
return int(prediction), output
def test_full_image_network(video_path, model_path, output_path,
start_frame=0, end_frame=None, cuda=False):
"""
Reads a video and evaluates a subset of frames with the a detection network
that takes in a full frame. Outputs are only given if a face is present
and the face is highlighted using dlib.
:param video_path: path to video file
:param model_path: path to model file (should expect the full sized image)
:param output_path: path where the output video is stored
:param start_frame: first frame to evaluate
:param end_frame: last frame to evaluate
:param cuda: enable cuda
:return:
"""
print('Starting: {}'.format(video_path))
if not os.path.exists(output_path):
os.mkdir(output_path)
# Read and write
reader = cv2.VideoCapture(video_path)
# video_fn = video_path.split('/')[-1].split('.')[0]+'.avi'
video_fn = 'output_video.avi'
os.makedirs(output_path, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
fps = reader.get(cv2.CAP_PROP_FPS)
num_frames = int(reader.get(cv2.CAP_PROP_FRAME_COUNT))
writer = None
# Face detector
face_detector = dlib.get_frontal_face_detector()
# Load model
# model, *_ = model_selection(modelname='xception', num_out_classes=2)
model = Two_Stream_Net()
model.load_state_dict(torch.load(model_path,map_location))
model = model.to(device)
model.eval()
if cuda:
model = model.cuda()
# Text variables
font_face = cv2.FONT_HERSHEY_SIMPLEX
thickness = 2
font_scale = 1
frame_num = 0
assert start_frame < num_frames - 1
end_frame = end_frame if end_frame else num_frames
pbar = tqdm(total=end_frame-start_frame)
while reader.isOpened():
_, image = reader.read()
if image is None:
break
frame_num += 1
if frame_num < start_frame:
continue
pbar.update(1)
# Image size
height, width = image.shape[:2]
# Init output writer
if writer is None:
# writer = cv2.VideoWriter(join(output_path, video_fn), fourcc, fps,
# (height, width)[::-1])
writer = cv2.VideoWriter(video_fn, fourcc, fps,
(height, width)[::-1])
# 2. Detect with dlib
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_detector(gray, 1)
if len(faces):
# For now only take biggest face
face = faces[0]
# --- Prediction ---------------------------------------------------
# Face crop with dlib and bounding box scale enlargement
x, y, size = get_boundingbox(face, width, height)
cropped_face = image[y:y+size, x:x+size]
# Actual prediction using our model
prediction, output = predict_with_model(cropped_face, model,
cuda=cuda)
# ------------------------------------------------------------------
# Text and bb
x = face.left()
y = face.top()
w = face.right() - x
h = face.bottom() - y
label = 'fake' if prediction == 0 else 'real'
color = (0, 255, 0) if prediction == 1 else (0, 0, 255)
output_list = ['{0:.2f}'.format(float(x)) for x in
output[0].detach().cpu().numpy()[0]]
cv2.putText(image, str(output_list)+'=>'+label, (x, y+h+30),
font_face, font_scale,
color, thickness, 2)
# draw box over face
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
if frame_num >= end_frame:
break
# Show
# cv2.imshow('test', image)
# cv2.waitKey(33) # About 30 fps
writer.write(image)
pbar.close()
if writer is not None:
writer.release()
print('Finished! Output saved under {}'.format(output_path))
else:
print('Input video file was empty')
return 'output_video.avi'