|
import argparse |
|
import gc |
|
import math |
|
import os |
|
from typing import Optional |
|
import torch |
|
from accelerate import init_empty_weights |
|
from tqdm import tqdm |
|
from transformers import CLIPTokenizer |
|
from library import model_util, sdxl_model_util, train_util, sdxl_original_unet |
|
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline |
|
|
|
TOKENIZER1_PATH = "openai/clip-vit-large-patch14" |
|
TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" |
|
|
|
DEFAULT_NOISE_OFFSET = 0.0357 |
|
|
|
|
|
def load_target_model(args, accelerator, model_version: str, weight_dtype): |
|
|
|
for pi in range(accelerator.state.num_processes): |
|
if pi == accelerator.state.local_process_index: |
|
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}") |
|
|
|
( |
|
load_stable_diffusion_format, |
|
text_encoder1, |
|
text_encoder2, |
|
vae, |
|
unet, |
|
logit_scale, |
|
ckpt_info, |
|
) = _load_target_model( |
|
args.pretrained_model_name_or_path, |
|
args.vae, |
|
model_version, |
|
weight_dtype, |
|
accelerator.device if args.lowram else "cpu", |
|
) |
|
|
|
|
|
if args.lowram: |
|
text_encoder1.to(accelerator.device) |
|
text_encoder2.to(accelerator.device) |
|
unet.to(accelerator.device) |
|
vae.to(accelerator.device) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
accelerator.wait_for_everyone() |
|
|
|
text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet]) |
|
|
|
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info |
|
|
|
|
|
def _load_target_model(name_or_path: str, vae_path: Optional[str], model_version: str, weight_dtype, device="cpu"): |
|
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path |
|
load_stable_diffusion_format = os.path.isfile(name_or_path) |
|
|
|
if load_stable_diffusion_format: |
|
print(f"load StableDiffusion checkpoint: {name_or_path}") |
|
( |
|
text_encoder1, |
|
text_encoder2, |
|
vae, |
|
unet, |
|
logit_scale, |
|
ckpt_info, |
|
) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device, weight_dtype) |
|
else: |
|
|
|
from diffusers import StableDiffusionXLPipeline |
|
|
|
variant = "fp16" if weight_dtype == torch.float16 else None |
|
print(f"load Diffusers pretrained models: {name_or_path}, variant={variant}") |
|
try: |
|
try: |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
name_or_path, torch_dtype=weight_dtype, variant=variant, tokenizer=None |
|
) |
|
except EnvironmentError as ex: |
|
if variant is not None: |
|
print("try to load fp32 model") |
|
pipe = StableDiffusionXLPipeline.from_pretrained(name_or_path, variant=None, tokenizer=None) |
|
else: |
|
raise ex |
|
except EnvironmentError as ex: |
|
print( |
|
f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}" |
|
) |
|
raise ex |
|
|
|
text_encoder1 = pipe.text_encoder |
|
text_encoder2 = pipe.text_encoder_2 |
|
vae = pipe.vae |
|
unet = pipe.unet |
|
del pipe |
|
|
|
|
|
state_dict = sdxl_model_util.convert_diffusers_unet_state_dict_to_sdxl(unet.state_dict()) |
|
with init_empty_weights(): |
|
unet = sdxl_original_unet.SdxlUNet2DConditionModel() |
|
sdxl_model_util._load_state_dict_on_device(unet, state_dict, device=device) |
|
print("U-Net converted to original U-Net") |
|
|
|
logit_scale = None |
|
ckpt_info = None |
|
|
|
|
|
if vae_path is not None: |
|
vae = model_util.load_vae(vae_path, weight_dtype) |
|
print("additional VAE loaded") |
|
|
|
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info |
|
|
|
|
|
def load_tokenizers(args: argparse.Namespace): |
|
print("prepare tokenizers") |
|
|
|
original_paths = [TOKENIZER1_PATH, TOKENIZER2_PATH] |
|
tokeniers = [] |
|
for i, original_path in enumerate(original_paths): |
|
tokenizer: CLIPTokenizer = None |
|
if args.tokenizer_cache_dir: |
|
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_")) |
|
if os.path.exists(local_tokenizer_path): |
|
print(f"load tokenizer from cache: {local_tokenizer_path}") |
|
tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path) |
|
|
|
if tokenizer is None: |
|
tokenizer = CLIPTokenizer.from_pretrained(original_path) |
|
|
|
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path): |
|
print(f"save Tokenizer to cache: {local_tokenizer_path}") |
|
tokenizer.save_pretrained(local_tokenizer_path) |
|
|
|
if i == 1: |
|
tokenizer.pad_token_id = 0 |
|
|
|
tokeniers.append(tokenizer) |
|
|
|
if hasattr(args, "max_token_length") and args.max_token_length is not None: |
|
print(f"update token length: {args.max_token_length}") |
|
|
|
return tokeniers |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( |
|
device=timesteps.device |
|
) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
def get_timestep_embedding(x, outdim): |
|
assert len(x.shape) == 2 |
|
b, dims = x.shape[0], x.shape[1] |
|
x = torch.flatten(x) |
|
emb = timestep_embedding(x, outdim) |
|
emb = torch.reshape(emb, (b, dims * outdim)) |
|
return emb |
|
|
|
|
|
def get_size_embeddings(orig_size, crop_size, target_size, device): |
|
emb1 = get_timestep_embedding(orig_size, 256) |
|
emb2 = get_timestep_embedding(crop_size, 256) |
|
emb3 = get_timestep_embedding(target_size, 256) |
|
vector = torch.cat([emb1, emb2, emb3], dim=1).to(device) |
|
return vector |
|
|
|
|
|
def save_sd_model_on_train_end( |
|
args: argparse.Namespace, |
|
src_path: str, |
|
save_stable_diffusion_format: bool, |
|
use_safetensors: bool, |
|
save_dtype: torch.dtype, |
|
epoch: int, |
|
global_step: int, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
vae, |
|
logit_scale, |
|
ckpt_info, |
|
): |
|
def sd_saver(ckpt_file, epoch_no, global_step): |
|
sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True) |
|
sdxl_model_util.save_stable_diffusion_checkpoint( |
|
ckpt_file, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
epoch_no, |
|
global_step, |
|
ckpt_info, |
|
vae, |
|
logit_scale, |
|
sai_metadata, |
|
save_dtype, |
|
) |
|
|
|
def diffusers_saver(out_dir): |
|
sdxl_model_util.save_diffusers_checkpoint( |
|
out_dir, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
src_path, |
|
vae, |
|
use_safetensors=use_safetensors, |
|
save_dtype=save_dtype, |
|
) |
|
|
|
train_util.save_sd_model_on_train_end_common( |
|
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver |
|
) |
|
|
|
|
|
|
|
|
|
def save_sd_model_on_epoch_end_or_stepwise( |
|
args: argparse.Namespace, |
|
on_epoch_end: bool, |
|
accelerator, |
|
src_path, |
|
save_stable_diffusion_format: bool, |
|
use_safetensors: bool, |
|
save_dtype: torch.dtype, |
|
epoch: int, |
|
num_train_epochs: int, |
|
global_step: int, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
vae, |
|
logit_scale, |
|
ckpt_info, |
|
): |
|
def sd_saver(ckpt_file, epoch_no, global_step): |
|
sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True) |
|
sdxl_model_util.save_stable_diffusion_checkpoint( |
|
ckpt_file, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
epoch_no, |
|
global_step, |
|
ckpt_info, |
|
vae, |
|
logit_scale, |
|
sai_metadata, |
|
save_dtype, |
|
) |
|
|
|
def diffusers_saver(out_dir): |
|
sdxl_model_util.save_diffusers_checkpoint( |
|
out_dir, |
|
text_encoder1, |
|
text_encoder2, |
|
unet, |
|
src_path, |
|
vae, |
|
use_safetensors=use_safetensors, |
|
save_dtype=save_dtype, |
|
) |
|
|
|
train_util.save_sd_model_on_epoch_end_or_stepwise_common( |
|
args, |
|
on_epoch_end, |
|
accelerator, |
|
save_stable_diffusion_format, |
|
use_safetensors, |
|
epoch, |
|
num_train_epochs, |
|
global_step, |
|
sd_saver, |
|
diffusers_saver, |
|
) |
|
|
|
|
|
def add_sdxl_training_arguments(parser: argparse.ArgumentParser): |
|
parser.add_argument( |
|
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする" |
|
) |
|
parser.add_argument( |
|
"--cache_text_encoder_outputs_to_disk", |
|
action="store_true", |
|
help="cache text encoder outputs to disk / text encoderの出力をディスクにキャッシュする", |
|
) |
|
|
|
|
|
def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True): |
|
assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません" |
|
if args.v_parameterization: |
|
print("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります") |
|
|
|
if args.clip_skip is not None: |
|
print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません") |
|
|
|
if args.multires_noise_iterations: |
|
print( |
|
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります" |
|
) |
|
else: |
|
if args.noise_offset is None: |
|
args.noise_offset = DEFAULT_NOISE_OFFSET |
|
elif args.noise_offset != DEFAULT_NOISE_OFFSET: |
|
print( |
|
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています" |
|
) |
|
print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました") |
|
|
|
assert ( |
|
not hasattr(args, "weighted_captions") or not args.weighted_captions |
|
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません" |
|
|
|
if supportTextEncoderCaching: |
|
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs: |
|
args.cache_text_encoder_outputs = True |
|
print( |
|
"cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / " |
|
+ "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました" |
|
) |
|
|
|
|
|
def sample_images(*args, **kwargs): |
|
return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs) |
|
|