|
import streamlit as st |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
import tempfile |
|
|
|
image_processor = AutoImageProcessor.from_pretrained( |
|
'ashish-001/deepfake-detection-using-ViT') |
|
model = AutoModelForImageClassification.from_pretrained( |
|
'ashish-001/deepfake-detection-using-ViT') |
|
|
|
|
|
def classify_frame(frame): |
|
inputs = image_processor(images=frame, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.sigmoid(logits) |
|
pred = torch.argmax(logits, dim=1).item() |
|
lab = 'Real' if pred == 1 else 'Fake' |
|
confidence, _ = torch.max(probs, dim=1) |
|
return f"{lab}::{format(confidence.item(), '.2f')}" |
|
|
|
|
|
st.title("Deepfake detector") |
|
uploaded_file = st.file_uploader( |
|
"Upload an image or video", |
|
type=["jpg", "jpeg", "png", "mp4", "avi", "mov", "mkv"] |
|
) |
|
placeholder = st.empty() |
|
if st.button('Detect'): |
|
if uploaded_file is not None: |
|
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') |
|
mime_type = uploaded_file.type |
|
if mime_type.startswith("image"): |
|
file_bytes = uploaded_file.read() |
|
np_arr = np.frombuffer(file_bytes, np.uint8) |
|
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) |
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
faces = clf.detectMultiScale( |
|
gray, scaleFactor=1.3, minNeighbors=5) |
|
for (x, y, w, h) in faces: |
|
cv2.rectangle(image_rgb, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
face = image_rgb[y:y + h, x:x + w] |
|
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) |
|
label = classify_frame(img) |
|
new_frame = cv2.putText( |
|
image_rgb, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) |
|
st.image(new_frame) |
|
|
|
elif mime_type.startswith('video'): |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file: |
|
temp_file.write(uploaded_file.read()) |
|
temp_video_path = temp_file.name |
|
cap = cv2.VideoCapture(temp_video_path) |
|
if not cap.isOpened(): |
|
st.error("Error: Cannot open video file.") |
|
else: |
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
faces = clf.detectMultiScale( |
|
gray, scaleFactor=1.3, minNeighbors=5) |
|
for (x, y, w, h) in faces: |
|
cv2.rectangle( |
|
frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
face = frame[y:y + h, x:x + w] |
|
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) |
|
label = classify_frame(img) |
|
frame = cv2.putText( |
|
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) |
|
placeholder.image(frame) |
|
cap.release() |
|
|
|
else: |
|
st.write("Please upload an image or video") |
|
if st.button('Use Example Video'): |
|
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') |
|
cap = cv2.VideoCapture("Sample.mp4") |
|
if not cap.isOpened(): |
|
st.error("Error: Cannot open video file.") |
|
else: |
|
st.write(f"Video credits: 'Deep Fakes' Are Becoming More Realistic Thanks To New Technology. Link:https://www.youtube.com/watch?v=CDMVaQOvtxU") |
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
faces = clf.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5) |
|
for (x, y, w, h) in faces: |
|
cv2.rectangle( |
|
frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
face = frame[y:y + h, x:x + w] |
|
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) |
|
label = classify_frame(img) |
|
frame = cv2.putText( |
|
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) |
|
placeholder.image(frame) |
|
cap.release() |
|
|