Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,104 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
-
import cv2
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import tempfile
|
7 |
-
|
8 |
-
image_processor = AutoImageProcessor.from_pretrained(
|
9 |
-
'ashish-001/deepfake-detection-using-ViT')
|
10 |
-
model = AutoModelForImageClassification.from_pretrained(
|
11 |
-
'ashish-001/deepfake-detection-using-ViT')
|
12 |
-
|
13 |
-
|
14 |
-
def classify_frame(frame):
|
15 |
-
inputs = image_processor(images=frame, return_tensors="pt")
|
16 |
-
outputs = model(**inputs)
|
17 |
-
logits = outputs.logits
|
18 |
-
probs = torch.nn.functional.sigmoid(logits)
|
19 |
-
pred = torch.argmax(logits, dim=1).item()
|
20 |
-
lab = 'Real' if pred == 1 else 'Fake'
|
21 |
-
confidence, _ = torch.max(probs, dim=1)
|
22 |
-
return f"{lab}::{format(confidence.item(), '.2f')}"
|
23 |
-
|
24 |
-
|
25 |
-
st.title("Deepfake detector")
|
26 |
-
uploaded_file = st.file_uploader(
|
27 |
-
"Upload an image or video",
|
28 |
-
type=["jpg", "jpeg", "png", "mp4", "avi", "mov", "mkv"]
|
29 |
-
)
|
30 |
-
placeholder = st.empty()
|
31 |
-
if st.button('Detect'):
|
32 |
-
if uploaded_file is not None:
|
33 |
-
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
34 |
-
mime_type = uploaded_file.type
|
35 |
-
if mime_type.startswith("image"):
|
36 |
-
file_bytes = uploaded_file.read()
|
37 |
-
np_arr = np.frombuffer(file_bytes, np.uint8)
|
38 |
-
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
39 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
40 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
41 |
-
faces = clf.detectMultiScale(
|
42 |
-
gray, scaleFactor=1.3, minNeighbors=5)
|
43 |
-
for (x, y, w, h) in faces:
|
44 |
-
cv2.rectangle(image_rgb, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
45 |
-
face = image_rgb[y:y + h, x:x + w]
|
46 |
-
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
47 |
-
label = classify_frame(img)
|
48 |
-
new_frame = cv2.putText(
|
49 |
-
image_rgb, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
50 |
-
st.image(new_frame)
|
51 |
-
|
52 |
-
elif mime_type.startswith('video'):
|
53 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
54 |
-
temp_file.write(uploaded_file.read())
|
55 |
-
temp_video_path = temp_file.name
|
56 |
-
cap = cv2.VideoCapture(temp_video_path)
|
57 |
-
if not cap.isOpened():
|
58 |
-
st.error("Error: Cannot open video file.")
|
59 |
-
else:
|
60 |
-
while True:
|
61 |
-
ret, frame = cap.read()
|
62 |
-
if not ret:
|
63 |
-
break
|
64 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
65 |
-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
66 |
-
faces = clf.detectMultiScale(
|
67 |
-
gray, scaleFactor=1.3, minNeighbors=5)
|
68 |
-
for (x, y, w, h) in faces:
|
69 |
-
cv2.rectangle(
|
70 |
-
frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
71 |
-
face = frame[y:y + h, x:x + w]
|
72 |
-
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
73 |
-
label = classify_frame(img)
|
74 |
-
frame = cv2.putText(
|
75 |
-
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
76 |
-
placeholder.image(frame)
|
77 |
-
cap.release()
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
st.
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
9 |
+
'ashish-001/deepfake-detection-using-ViT')
|
10 |
+
model = AutoModelForImageClassification.from_pretrained(
|
11 |
+
'ashish-001/deepfake-detection-using-ViT')
|
12 |
+
|
13 |
+
|
14 |
+
def classify_frame(frame):
|
15 |
+
inputs = image_processor(images=frame, return_tensors="pt")
|
16 |
+
outputs = model(**inputs)
|
17 |
+
logits = outputs.logits
|
18 |
+
probs = torch.nn.functional.sigmoid(logits)
|
19 |
+
pred = torch.argmax(logits, dim=1).item()
|
20 |
+
lab = 'Real' if pred == 1 else 'Fake'
|
21 |
+
confidence, _ = torch.max(probs, dim=1)
|
22 |
+
return f"{lab}::{format(confidence.item(), '.2f')}"
|
23 |
+
|
24 |
+
|
25 |
+
st.title("Deepfake detector")
|
26 |
+
uploaded_file = st.file_uploader(
|
27 |
+
"Upload an image or video",
|
28 |
+
type=["jpg", "jpeg", "png", "mp4", "avi", "mov", "mkv"]
|
29 |
+
)
|
30 |
+
placeholder = st.empty()
|
31 |
+
if st.button('Detect'):
|
32 |
+
if uploaded_file is not None:
|
33 |
+
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
34 |
+
mime_type = uploaded_file.type
|
35 |
+
if mime_type.startswith("image"):
|
36 |
+
file_bytes = uploaded_file.read()
|
37 |
+
np_arr = np.frombuffer(file_bytes, np.uint8)
|
38 |
+
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
39 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
40 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
41 |
+
faces = clf.detectMultiScale(
|
42 |
+
gray, scaleFactor=1.3, minNeighbors=5)
|
43 |
+
for (x, y, w, h) in faces:
|
44 |
+
cv2.rectangle(image_rgb, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
45 |
+
face = image_rgb[y:y + h, x:x + w]
|
46 |
+
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
47 |
+
label = classify_frame(img)
|
48 |
+
new_frame = cv2.putText(
|
49 |
+
image_rgb, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
50 |
+
st.image(new_frame)
|
51 |
+
|
52 |
+
elif mime_type.startswith('video'):
|
53 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
54 |
+
temp_file.write(uploaded_file.read())
|
55 |
+
temp_video_path = temp_file.name
|
56 |
+
cap = cv2.VideoCapture(temp_video_path)
|
57 |
+
if not cap.isOpened():
|
58 |
+
st.error("Error: Cannot open video file.")
|
59 |
+
else:
|
60 |
+
while True:
|
61 |
+
ret, frame = cap.read()
|
62 |
+
if not ret:
|
63 |
+
break
|
64 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
65 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
66 |
+
faces = clf.detectMultiScale(
|
67 |
+
gray, scaleFactor=1.3, minNeighbors=5)
|
68 |
+
for (x, y, w, h) in faces:
|
69 |
+
cv2.rectangle(
|
70 |
+
frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
71 |
+
face = frame[y:y + h, x:x + w]
|
72 |
+
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
73 |
+
label = classify_frame(img)
|
74 |
+
frame = cv2.putText(
|
75 |
+
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
76 |
+
placeholder.image(frame)
|
77 |
+
cap.release()
|
78 |
+
|
79 |
+
else:
|
80 |
+
st.write("Please upload an image or video")
|
81 |
+
if st.button('Use Example Video'):
|
82 |
+
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
83 |
+
cap = cv2.VideoCapture("Sample.mp4")
|
84 |
+
if not cap.isOpened():
|
85 |
+
st.error("Error: Cannot open video file.")
|
86 |
+
else:
|
87 |
+
st.write(f"Video credits: 'Deep Fakes' Are Becoming More Realistic Thanks To New Technology. Link:https://www.youtube.com/watch?v=CDMVaQOvtxU")
|
88 |
+
while True:
|
89 |
+
ret, frame = cap.read()
|
90 |
+
if not ret:
|
91 |
+
break
|
92 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
93 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
94 |
+
faces = clf.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
|
95 |
+
for (x, y, w, h) in faces:
|
96 |
+
cv2.rectangle(
|
97 |
+
frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
98 |
+
face = frame[y:y + h, x:x + w]
|
99 |
+
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
100 |
+
label = classify_frame(img)
|
101 |
+
frame = cv2.putText(
|
102 |
+
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
103 |
+
placeholder.image(frame)
|
104 |
+
cap.release()
|