File size: 1,784 Bytes
7cfdf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from fastapi import FastAPI
import torch
from transformers import CLIPProcessor, CLIPModel
from dotenv import load_dotenv
import logging
import os

load_dotenv()


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="Text Embedding API",
              description="Returns CLIP text embeddings via GET")


HF_TOKEN = os.getenv('hf_token')

logger.info("Loading CLIP processor and model...")
try:
    processor = CLIPProcessor.from_pretrained(
        "openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
    clip_model = CLIPModel.from_pretrained(
        "openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
    clip_model.eval()
    logger.info("CLIP model loaded successfully")
except Exception as e:
    logger.error(f"Failed to load CLIP model: {e}")
    raise


def get_text_embedding(text: str):
    logger.info(f"Processing text: {text}")
    try:
        inputs = processor(text=[text], return_tensors="pt",
                           padding=True, truncation=True)
        with torch.no_grad():
            text_embedding = clip_model.get_text_features(**inputs)
        logger.info("Text embedding generated")
        return text_embedding.squeeze(0).tolist()
    except Exception as e:
        logger.error(f"Error generating embedding: {e}")
        raise


@app.get("/")
async def root():
    logger.info("Root endpoint accessed")
    return {"message": "Welcome to the Text Embedding API. Use GET https://ashish-001-text-embedding-api.hf.space/embedding?text=your_text to get embeddings."}


@app.get("/embedding")
async def get_embedding(text: str):
    logger.info(f"Embedding endpoint called with text")
    embedding = get_text_embedding(text)
    return {"embedding": embedding, "dimension": len(embedding)}