ashish-001's picture
Update app.py
7cfdf11 verified
from fastapi import FastAPI
import torch
from transformers import CLIPProcessor, CLIPModel
from dotenv import load_dotenv
import logging
import os
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="Text Embedding API",
description="Returns CLIP text embeddings via GET")
HF_TOKEN = os.getenv('hf_token')
logger.info("Loading CLIP processor and model...")
try:
processor = CLIPProcessor.from_pretrained(
"openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
clip_model = CLIPModel.from_pretrained(
"openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
clip_model.eval()
logger.info("CLIP model loaded successfully")
except Exception as e:
logger.error(f"Failed to load CLIP model: {e}")
raise
def get_text_embedding(text: str):
logger.info(f"Processing text: {text}")
try:
inputs = processor(text=[text], return_tensors="pt",
padding=True, truncation=True)
with torch.no_grad():
text_embedding = clip_model.get_text_features(**inputs)
logger.info("Text embedding generated")
return text_embedding.squeeze(0).tolist()
except Exception as e:
logger.error(f"Error generating embedding: {e}")
raise
@app.get("/")
async def root():
logger.info("Root endpoint accessed")
return {"message": "Welcome to the Text Embedding API. Use GET https://ashish-001-text-embedding-api.hf.space/embedding?text=your_text to get embeddings."}
@app.get("/embedding")
async def get_embedding(text: str):
logger.info(f"Embedding endpoint called with text")
embedding = get_text_embedding(text)
return {"embedding": embedding, "dimension": len(embedding)}