File size: 11,291 Bytes
20df221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a008413
20df221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2cd92c
 
 
 
20df221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
'''Copyright 2024 Ashok Kumar

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.'''

import os
import requests
import json
import pandas as pd
import numpy as np
import requests
import geopandas as gpd
import contextily as ctx
import tzlocal
import pytz 
from PIL import Image
from datetime import datetime
import matplotlib.pyplot as plt
from geopy.exc import GeocoderTimedOut
from geopy.geocoders import Nominatim
import warnings
warnings.filterwarnings('ignore')
from plotly.graph_objs import Marker
import plotly.express as px
import streamlit as st
# from data import flight_data
from huggingface_hub import InferenceApi, login, InferenceClient


hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
    raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
login(hf_token)


API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
headers = {"Authorization": f"Bearer {hf_token}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

def query_flight_data(geo_df, question):


    table_data = {
        "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
        "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
        "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
        "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(),  # Assuming on_ground is boolean or categorical
        "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
        "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
        "spi": geo_df["spi"].astype(str).iloc[:100].tolist(),  # Assuming spi is boolean or categorical
        "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(),  # Assuming position_source is categorical
        "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
        "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
    }


    # Construct the payload
    payload = {
        "inputs": {
            "query": question,
            "table": table_data,
        }
    }

    # Get the model response
    response = query(payload)

    # Check if 'answer' is in response and return it as a sentence
    if 'answer' in response:
        answer = response['answer']
        return f"The answer to your question '{question}': :orange[{answer}]"
    else:
        return "The model could not find an answer to your question."


def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
    geolocator = Nominatim(user_agent="flight_tracker")
    loc = geolocator.geocode(country)
    loc_box = loc[1]
    extend_left =+12*flight_view_level
    extend_right =+10*flight_view_level
    extend_top =+10*flight_view_level
    extend_bottom =+ 18*flight_view_level
    lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
    lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
    
    tile_zoom = 8 # zoom of the map loaded by contextily
    figsize = (15, 15)
    columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
            "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
            "squawk","spi","position_source",]
    data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
    column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
                    "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
    airport_df = pd.read_csv(data_url, header=None, names=column_names)
    airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
    airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
    airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
                            (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
                            (airport_country_loc['Longitude'] <= lon_max)]
    def get_traffic_gdf():
        url_data = (
                f"https://@opensky-network.org/api/states/all?"
                f"lamin={str(lat_min)}"
                f"&lomin={str(lon_min)}"
                f"&lamax={str(lat_max)}"
                f"&lomax={str(lon_max)}")
        json_dict = requests.get(url_data).json()

        unix_timestamp = int(json_dict["time"])
        local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
        local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
        time = []
        for i in range(len(json_dict['states'])):
            time.append(local_time)
        df_time = pd.DataFrame(time,columns=['time'])
        state_df = pd.DataFrame(json_dict["states"],columns=columns)
        state_df['time'] = df_time
        gdf = gpd.GeoDataFrame(
                state_df,
                geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
                crs={"init": "epsg:4326"},  # WGS84
            )
        # banner_image = Image.open('banner.png')
        # st.image(banner_image, width=300)
        st.title("Live Flight Tracker")
        st.subheader('Flight Details', divider='rainbow')
        st.write('Location: {0}'.format(loc))
        st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
        st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
        st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
        st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
        st.write('Plotting the flight: {}'.format(flight_info))
        st.subheader('Map Visualization', divider='rainbow')
        st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
        return gdf

    geo_df = get_traffic_gdf()
    if airport == 0:
        fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
                            color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
                            hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
        'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
    elif airport == 1:
        fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
                            color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
                            hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
        'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
        fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
                                        hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
    else: None
    fig.update_layout(mapbox_style="carto-darkmatter")
    fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
    # out = fig.show())
    out = st.plotly_chart(fig, theme=None)
    return out
st.set_page_config(
    layout="wide"
)
# image = Image.open('logo.png')
# add_selectbox = st.sidebar.image(
#     image, width=150
# )
add_selectbox = st.sidebar.subheader(
    "Configure Map",divider='rainbow'
)
with st.sidebar:
    Refresh = st.button('Update Map', key=1)
    on = st.toggle('View Airports')
    if on:
        air_port = 1
        st.write(':rainbow[Nice Work Buddy!]')
        st.write('Now Airports are Visible')
    else:
        air_port=0
    view = st.slider('Increase Flight Visibility',1,6,2)
    st.write("You Selected:", view)
    cou = st.text_input('Type Country Name', 'north america')
    st.write('The current Country name is', cou)
    time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
    st.write('The current Time Zone is', time)
    info = st.selectbox(
    'Select Flight Information',
    ('baro_altitude',
        'on_ground', 'velocity',
        'geo_altitude'))
    st.write('Plotting the data of Flight:', info)
    clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
    if clr == "rainbow":
        st.write('The current color is', "****:rainbow[Rainbow]****")
    elif clr == 'ice':
        st.write('The current color is', "****:blue[Ice]****")
    elif clr == 'hot':
        st.write('The current color is', "****:red[Hot]****")
    else: None
# with st.spinner('Wait!, We Requesting API Data...'):
# try:
flight_tracking(flight_view_level=view, country=cou,flight_info=info,
            local_time_zone=time, airport=air_port, color=clr)
st.subheader('Ask your Questions!', divider='rainbow')
st.write("Google's TAPAS base LLM model 🤖")
geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
result = query_flight_data(geo_df, question)
st.markdown(result)
# except TypeError:
#     st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
#     st.button('Re-run', type="primary")
# st.snow()