SkyTrack2 / app.py
ashok2216's picture
Update app.py
e2cd92c verified
'''Copyright 2024 Ashok Kumar
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.'''
import os
import requests
import json
import pandas as pd
import numpy as np
import requests
import geopandas as gpd
import contextily as ctx
import tzlocal
import pytz
from PIL import Image
from datetime import datetime
import matplotlib.pyplot as plt
from geopy.exc import GeocoderTimedOut
from geopy.geocoders import Nominatim
import warnings
warnings.filterwarnings('ignore')
from plotly.graph_objs import Marker
import plotly.express as px
import streamlit as st
# from data import flight_data
from huggingface_hub import InferenceApi, login, InferenceClient
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
login(hf_token)
API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
headers = {"Authorization": f"Bearer {hf_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def query_flight_data(geo_df, question):
table_data = {
"icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
"callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
"origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
"time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
"velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
"geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
"spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
"position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
"time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
"geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
}
# Construct the payload
payload = {
"inputs": {
"query": question,
"table": table_data,
}
}
# Get the model response
response = query(payload)
# Check if 'answer' is in response and return it as a sentence
if 'answer' in response:
answer = response['answer']
return f"The answer to your question '{question}': :orange[{answer}]"
else:
return "The model could not find an answer to your question."
def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
geolocator = Nominatim(user_agent="flight_tracker")
loc = geolocator.geocode(country)
loc_box = loc[1]
extend_left =+12*flight_view_level
extend_right =+10*flight_view_level
extend_top =+10*flight_view_level
extend_bottom =+ 18*flight_view_level
lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
tile_zoom = 8 # zoom of the map loaded by contextily
figsize = (15, 15)
columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
"baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
"squawk","spi","position_source",]
data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
"Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
airport_df = pd.read_csv(data_url, header=None, names=column_names)
airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
(airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
(airport_country_loc['Longitude'] <= lon_max)]
def get_traffic_gdf():
url_data = (
f"https://@opensky-network.org/api/states/all?"
f"lamin={str(lat_min)}"
f"&lomin={str(lon_min)}"
f"&lamax={str(lat_max)}"
f"&lomax={str(lon_max)}")
json_dict = requests.get(url_data).json()
unix_timestamp = int(json_dict["time"])
local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
time = []
for i in range(len(json_dict['states'])):
time.append(local_time)
df_time = pd.DataFrame(time,columns=['time'])
state_df = pd.DataFrame(json_dict["states"],columns=columns)
state_df['time'] = df_time
gdf = gpd.GeoDataFrame(
state_df,
geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
crs={"init": "epsg:4326"}, # WGS84
)
# banner_image = Image.open('banner.png')
# st.image(banner_image, width=300)
st.title("Live Flight Tracker")
st.subheader('Flight Details', divider='rainbow')
st.write('Location: {0}'.format(loc))
st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
st.write('Plotting the flight: {}'.format(flight_info))
st.subheader('Map Visualization', divider='rainbow')
st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
return gdf
geo_df = get_traffic_gdf()
if airport == 0:
fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
elif airport == 1:
fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
else: None
fig.update_layout(mapbox_style="carto-darkmatter")
fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
# out = fig.show())
out = st.plotly_chart(fig, theme=None)
return out
st.set_page_config(
layout="wide"
)
# image = Image.open('logo.png')
# add_selectbox = st.sidebar.image(
# image, width=150
# )
add_selectbox = st.sidebar.subheader(
"Configure Map",divider='rainbow'
)
with st.sidebar:
Refresh = st.button('Update Map', key=1)
on = st.toggle('View Airports')
if on:
air_port = 1
st.write(':rainbow[Nice Work Buddy!]')
st.write('Now Airports are Visible')
else:
air_port=0
view = st.slider('Increase Flight Visibility',1,6,2)
st.write("You Selected:", view)
cou = st.text_input('Type Country Name', 'north america')
st.write('The current Country name is', cou)
time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
st.write('The current Time Zone is', time)
info = st.selectbox(
'Select Flight Information',
('baro_altitude',
'on_ground', 'velocity',
'geo_altitude'))
st.write('Plotting the data of Flight:', info)
clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
if clr == "rainbow":
st.write('The current color is', "****:rainbow[Rainbow]****")
elif clr == 'ice':
st.write('The current color is', "****:blue[Ice]****")
elif clr == 'hot':
st.write('The current color is', "****:red[Hot]****")
else: None
# with st.spinner('Wait!, We Requesting API Data...'):
# try:
flight_tracking(flight_view_level=view, country=cou,flight_info=info,
local_time_zone=time, airport=air_port, color=clr)
st.subheader('Ask your Questions!', divider='rainbow')
st.write("Google's TAPAS base LLM model 🤖")
geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
result = query_flight_data(geo_df, question)
st.markdown(result)
# except TypeError:
# st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
# st.button('Re-run', type="primary")
# st.snow()