Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,114 Bytes
9ee602d d59b502 9ee602d cf3e7d0 9ee602d 7a318b6 9ee602d 0a7b8aa 9ee602d a5274ea 9ee602d 419ed32 9ee602d 419ed32 9ee602d 380eee4 9ee602d bbf2384 6521a1f bbf2384 6521a1f bbf2384 6521a1f bbf2384 6521a1f bbf2384 6521a1f a9a919c 6521a1f 9ee602d 8c46d78 380eee4 9ee602d 8963504 bbf2384 8963504 bbf2384 612f41c bbf2384 612f41c 9ee602d 8c46d78 9ee602d 612f41c 9ee602d 612f41c 9ee602d 08a2fff 9ee602d fe0423a 213452a fe0423a 08a2fff 9ee602d 8d89c6b a3269e7 9ee602d a3269e7 9ee602d a9a919c 9ee602d 4bf671b 9ee602d 08a2fff afcf20d 9ee602d 213452a 9ee602d 213452a 9ee602d cd90a04 213452a 9ee602d 213452a 9ee602d 6c64c27 213452a a863118 213452a 0684254 a3269e7 9ee602d 8c46d78 9ee602d 419ed32 9ee602d bbf2384 419ed32 9ee602d 213452a 9ee602d fe0423a 08a2fff fe0423a 9ee602d fe0423a 9ee602d 6b831b9 9ee602d 04525c0 9ee602d 6ace0a0 9ee602d 26a388d 7d9642f 7683c01 7d9642f 26a388d 9ee602d 6ace0a0 9ea6800 3afa13e 9ea6800 9ee602d bbf2384 9ee602d afcf20d 408d399 9ee602d 0684254 9ee602d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
#====================================================================
# https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer
#====================================================================
"""
Orpheus Music Transformer Gradio App - Single Model, Simplified Version
SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs
Using one model which was trained for 3 full epochs"
"""
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import time as reqtime
import datetime
from pytz import timezone
import torch
import matplotlib.pyplot as plt
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder, top_p
import random
# -----------------------------
# CONFIGURATION & GLOBALS
# -----------------------------
SEP = '=' * 70
PDT = timezone('US/Pacific')
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_96332_steps_0.82_loss_0.748_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
NUM_OUT_BATCHES = 10
PREVIEW_LENGTH = 120 # in tokens
# -----------------------------
# PRINT START-UP INFO
# -----------------------------
def print_sep():
print(SEP)
print_sep()
print("Orpheus Music Transformer Gradio App")
print_sep()
print("Loading modules...")
# -----------------------------
# ENVIRONMENT & PyTorch Settings
# -----------------------------
os.environ['USE_FLASH_ATTENTION'] = '1'
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
print_sep()
print("PyTorch version:", torch.__version__)
print("Done loading modules!")
print_sep()
# -----------------------------
# MODEL INITIALIZATION
# -----------------------------
print_sep()
print("Instantiating model...")
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 18819
model = TransformerWrapper(
num_tokens=PAD_IDX + 1,
max_seq_len=SEQ_LEN,
attn_layers=Decoder(
dim=2048,
depth=8,
heads=32,
rotary_pos_emb=True,
attn_flash=True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print_sep()
print("Loading model checkpoint...")
checkpoint = hf_hub_download(
repo_id='asigalov61/Orpheus-Music-Transformer',
filename=MODEL_CHECKPOINT
)
model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True))
model = torch.compile(model, mode='max-autotune')
print_sep()
print("Done!")
print("Model will use", dtype, "precision...")
print_sep()
model.cuda()
model.eval()
# -----------------------------
# HELPER FUNCTIONS
# -----------------------------
def render_midi_output(final_composition):
"""Generate MIDI score, plot, and audio from final composition."""
fname, midi_score = save_midi(final_composition)
time_val = midi_score[-1][1] / 1000 # seconds marker from last note
midi_plot = TMIDIX.plot_ms_SONG(
midi_score,
plot_title='Orpheus Music Transformer Composition',
block_lines_times_list=[],
return_plt=True
)
midi_audio = midi_to_colab_audio(
fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
return (16000, midi_audio), midi_plot, fname + '.mid', time_val
# -----------------------------
# MIDI PROCESSING FUNCTIONS
# -----------------------------
def load_midi(input_midi):
"""Process the input MIDI file and create a token sequence."""
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True)
if escore_notes:
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True)
dscore = TMIDIX.delta_score_notes(escore_notes)
dcscore = TMIDIX.chordify_score([d[1:] for d in dscore])
melody_chords = [18816]
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
for i, c in enumerate(dcscore):
delta_time = c[0][0]
melody_chords.append(delta_time)
for e in c:
#=======================================================
# Durations
dur = max(1, min(255, e[1]))
# Patches
pat = max(0, min(128, e[5]))
# Pitches
ptc = max(1, min(127, e[3]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[4]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
#=======================================================
# Writing final note
pat_ptc = (128 * pat) + ptc
dur_vel = (8 * dur) + velocity
melody_chords.extend([pat_ptc+256, dur_vel+16768])
return melody_chords
else:
return [18816]
def save_midi(tokens):
"""Convert token sequence back to a MIDI score and write it using TMIDIX.
"""
time = 0
dur = 1
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
song_f = []
for ss in tokens:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 16768:
patch = (ss-256) // 128
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-256) % 128
if 16768 <= ss < 18816:
dur = ((ss-16768) // 8) * 16
vel = (((ss-16768) % 8)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, patch])
patches = [0 if x==-1 else x for x in patches]
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
# Generate a time stamp using the PDT timezone.
timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S")
fname = f"Orpheus-Music-Transformer-Composition"
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
output_score,
output_signature='Orpheus Music Transformer',
output_file_name=fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
verbose=False
)
return fname, output_score
# -----------------------------
# MUSIC GENERATION FUNCTION (Combined)
# -----------------------------
@spaces.GPU
def generate_music(prime, num_gen_tokens, num_gen_batches, model_temperature, model_top_p):
"""Generate music tokens given prime tokens and parameters."""
if len(prime) >= 7168:
prime = [18816] + prime[-7168:]
inputs = prime if prime else [18816]
print("Generating...")
inp = torch.LongTensor([inputs] * num_gen_batches).cuda()
with ctx:
out = model.generate(
inp,
num_gen_tokens,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_top_p},
temperature=model_temperature,
eos_token=18818,
return_prime=False,
verbose=False
)
print("Done!")
print_sep()
return out.tolist()
def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens,
model_temperature, model_top_p, add_drums, add_outro, final_composition, generated_batches, block_lines):
"""
Generate tokens using the model, update the composition state, and prepare outputs.
This function combines seed loading, token generation, and UI output packaging.
"""
print_sep()
print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
start_time = reqtime.time()
print_sep()
if input_midi is not None:
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('Input file name:', fn)
print('Num prime tokens:', num_prime_tokens)
print('Num gen tokens:', num_gen_tokens)
print('Model temp:', model_temperature)
print('Model top p:', model_top_p)
print('Add drums:', add_drums)
print('Add outro:', add_outro)
print_sep()
# Load seed from MIDI if there is no existing composition.
if not final_composition and input_midi is not None:
final_composition = load_midi(input_midi)
if num_prime_tokens < 7168:
final_composition = final_composition[:num_prime_tokens]
midi_fname, midi_score = save_midi(final_composition)
# Use the last note's time as a marker.
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
if final_composition:
if add_outro:
final_composition.append(18817) # Outro token
if add_drums:
drum_pitch = random.choice([36, 38])
final_composition.extend([(128*128)+drum_pitch+256]) # Drum token
print_sep()
print('Composition has', len(final_composition), 'tokens')
print_sep()
batched_gen_tokens = generate_music(final_composition, num_gen_tokens,
NUM_OUT_BATCHES, model_temperature, model_top_p)
output_batches = []
for i, tokens in enumerate(batched_gen_tokens):
preview_tokens = final_composition[-PREVIEW_LENGTH:]
midi_fname, midi_score = save_midi(preview_tokens + tokens)
plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True}
if len(final_composition) > PREVIEW_LENGTH:
plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if 256 <= t < 16768])
midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs)
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True)
output_batches.append([(16000, midi_audio), midi_plot, tokens])
# Update generated_batches (for use by add/remove functions)
generated_batches = batched_gen_tokens
# Flatten outputs: states then audio and plots for each batch.
outputs_flat = []
for batch in output_batches:
outputs_flat.extend([batch[0], batch[1]])
print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
print_sep()
end_time = reqtime.time()
execution_time = end_time - start_time
print(f"Request execution time: {execution_time} seconds")
print_sep()
return [final_composition, generated_batches, block_lines] + outputs_flat
# -----------------------------
# BATCH HANDLING FUNCTIONS
# -----------------------------
def add_batch(batch_number, final_composition, generated_batches, block_lines):
"""Add tokens from the specified batch to the final composition and update outputs."""
if generated_batches:
final_composition.extend(generated_batches[batch_number])
midi_fname, midi_score = save_midi(final_composition)
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
midi_plot = TMIDIX.plot_ms_SONG(
midi_score,
plot_title='Orpheus Music Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True
)
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True)
print("Added batch #", batch_number)
print_sep()
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):
"""Remove tokens from the final composition and update outputs."""
if final_composition and len(final_composition) > num_tokens:
final_composition = final_composition[:-num_tokens]
if block_lines:
block_lines.pop()
midi_fname, midi_score = save_midi(final_composition)
midi_plot = TMIDIX.plot_ms_SONG(
midi_score,
plot_title='Orpheus Music Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True
)
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True)
print("Removed batch #", batch_number)
print_sep()
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
def clear():
"""Clear outputs and reset state."""
print_sep()
print('Clear batch...')
print_sep()
return None, None, None, [], []
def reset(final_composition=[], generated_batches=[], block_lines=[]):
"""Reset composition state."""
print_sep()
print('Reset MIDI...')
print_sep()
return [], [], []
# -----------------------------
# GRADIO INTERFACE SETUP
# -----------------------------
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs</h1>")
gr.HTML("""
Check out <a href="https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset">Godzilla MIDI Dataset</a> on Hugging Face
<p>
<a href="https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
gr.HTML("""
<iframe width="100%" height="300" scrolling="no" frameborder="no" allow="autoplay" src="https://w.soundcloud.com/player/?url=https%3A//api.soundcloud.com/playlists/2042253855&color=%23ff5500&auto_play=false&hide_related=false&show_comments=true&show_user=true&show_reposts=false&show_teaser=true&visual=true"></iframe><div style="font-size: 10px; color: #cccccc;line-break: anywhere;word-break: normal;overflow: hidden;white-space: nowrap;text-overflow: ellipsis; font-family: Interstate,Lucida Grande,Lucida Sans Unicode,Lucida Sans,Garuda,Verdana,Tahoma,sans-serif;font-weight: 100;"><a href="https://soundcloud.com/aleksandr-sigalov-61" title="Project Los Angeles" target="_blank" style="color: #cccccc; text-decoration: none;">Project Los Angeles</a> · <a href="https://soundcloud.com/aleksandr-sigalov-61/sets/orpheus-music-transformer" title="Orpheus Music Transformer" target="_blank" style="color: #cccccc; text-decoration: none;">Orpheus Music Transformer</a></div>
""")
gr.Markdown("## Key Features")
gr.Markdown("""
- **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE.
- **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation.
- **Premium Training Data**: Trained solely on the highest-quality MIDIs from the Godzilla MIDI dataset.
- **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord.
- **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression.
- **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately.
- **Natural Composition Endings**: Outro tokens that help generate smooth and natural musical conclusions.
""")
gr.Markdown(
"""
## If you enjoyed Orpheus Music Transformer, please star and duplicate. It helps a lot! 🤗
### [⭐ Star this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer)
### [🔁 Duplicate this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true)
### [⭐ Star models repo](https://huggingface.co/asigalov61/Orpheus-Music-Transformer)
"""
)
# Global state variables for composition
final_composition = gr.State([])
generated_batches = gr.State([])
block_lines = gr.State([])
gr.Markdown("## Upload seed MIDI or click 'Generate' for random output")
gr.Markdown("### PLEASE NOTE:")
gr.Markdown("* Orpheus Music Transformer is a primarily music continuation/co-composition model!")
gr.Markdown("* The model works best if given some music context to work with")
gr.Markdown("* Random generation from SOS token/embeddings may not always produce good results")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
[final_composition, generated_batches, block_lines])
gr.Markdown("## Generate")
num_prime_tokens = gr.Slider(16, 7168, value=7168, step=1, label="Number of prime tokens")
num_gen_tokens = gr.Slider(16, 1024, value=512, step=1, label="Number of tokens to generate")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value")
add_drums = gr.Checkbox(value=False, label="Add drums")
add_outro = gr.Checkbox(value=False, label="Add an outro")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Batch Previews")
outputs = [final_composition, generated_batches, block_lines]
# Two outputs (audio and plot) for each batch
for i in range(NUM_OUT_BATCHES):
with gr.Tab(f"Batch # {i}"):
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3")
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
outputs.extend([audio_output, plot_output])
generate_btn.click(
generate_music_and_state,
[input_midi, num_prime_tokens, num_gen_tokens, model_temperature, model_top_p, add_drums, add_outro,
final_composition, generated_batches, block_lines],
outputs
)
gr.Markdown("## Add/Remove Batch")
batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove")
add_btn = gr.Button("Add batch", variant="primary")
remove_btn = gr.Button("Remove batch", variant="stop")
clear_btn = gr.ClearButton()
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3")
final_plot_output = gr.Plot(label="Final MIDI plot")
final_file_output = gr.File(label="Final MIDI file")
add_btn.click(
add_batch,
[batch_number, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
)
remove_btn.click(
remove_batch,
[batch_number, num_gen_tokens, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
)
clear_btn.click(clear, inputs=None,
outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines])
demo.launch() |