asmaa1's picture
Create app.py
6ff936b verified
import joblib
import gradio as gr
# Load the saved model
gbc = joblib.load('diabetes_model.pkl')
def prediction(a, b, c, d, e, f, g, h):
try:
# Create a DataFrame for the new input
new_data = [[a, b, c, d, e, f, g, h]]
# Make a prediction
result = gbc.predict(new_data)
# Print the inputs
input_data = {
"Pregnancies": a,
"Glucose": b,
"BloodPressure": c,
"SkinThickness": d,
"Insulin": e,
"BMI": f,
"DiabetesPedigreeFunction": g,
"Age": h,
}
print("User Input:", input_data) # Print inputs to the console
# Determine the prediction message
if result[0] == 0:
prediction_message = "Based on your results, you are not diabetic. Maintain a healthy lifestyle and regular check-ups."
else:
prediction_message = "Your results indicate that you are diabetic. Please consult with a healthcare professional for further guidance and management."
# Return both the prediction and the image URL
return prediction_message, image_url
except Exception as e:
return f"Error: {str(e)}", None # Return None for the image in case of error
# Example values
example_inputs = [6, 148.0, 72.0, 35.0, 79.799479, 33.6, 0.627, 50]
# Image URL (replace this with a direct image URL)
image_url = "pngtree-world-diabetes-day-raising-awareness-for-a-healthier-future-png-image_14138135.png"
# Create the Gradio interface with a soft theme
app = gr.Interface(
fn=prediction,
inputs=[
gr.Number(label="Pregnancies", value=example_inputs[0]),
gr.Number(label="Glucose", value=example_inputs[1]),
gr.Number(label="BloodPressure", value=example_inputs[2]),
gr.Number(label="SkinThickness", value=example_inputs[3]),
gr.Number(label="Insulin", value=example_inputs[4]),
gr.Number(label="BMI", value=example_inputs[5]),
gr.Number(label="DiabetesPedigreeFunction", value=example_inputs[6]),
gr.Number(label="Age", value=example_inputs[7])
],
outputs=[gr.Text(label="Prediction"), gr.Image(value=image_url, label="Image", show_label=True)],
title="Diabetes Prediction",
theme=gr.themes.Soft()
)
# Launch the app
app.launch()