Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from huggingface_hub import InferenceClient | |
from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput | |
# Use the fine-tuned maritime legal model | |
MODEL = "nomiChroma3.1" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
try: | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
try: | |
if isinstance(message, ChatCompletionStreamOutput): | |
content = message.choices[0].delta.content | |
if content is not None: | |
response += content | |
yield response | |
if message.choices[0].finish_reason == 'stop': | |
break | |
elif isinstance(message, dict): | |
content = message.get('choices', [{}])[0].get('delta', {}).get('content') | |
if content: | |
response += content | |
yield response | |
if message.get('choices', [{}])[0].get('finish_reason') == 'stop': | |
break | |
elif isinstance(message, str): | |
if message.strip(): # Only process non-empty strings | |
response += message | |
yield response | |
else: | |
print(f"Unexpected message type: {type(message)}") | |
print(f"Message content: {message}") | |
except Exception as e: | |
print(f"Error processing message: {e}") | |
print(f"Problematic message: {message}") | |
continue # Continue to the next message even if there's an error | |
# Final yield to ensure all content is returned | |
if response: | |
yield response | |
except Exception as e: | |
print(f"An error occurred in the main loop: {e}") | |
if response: | |
yield response | |
else: | |
yield f"An error occurred: {e}" | |
# Gradio interface setup | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information based on Indian maritime legal principles and regulations.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title="Maritime Legal Compliance", | |
description="This chatbot uses Fine-tuned LLAMA-3.1 model personalised specifically to provide assistance with Indian maritime legal queries.", | |
theme="soft", | |
examples=[ | |
["What are the key regulations governing ports in India?"], | |
["Explain the concept of cabotage in Indian maritime law."], | |
["What are the legal requirements for registering a vessel in India?"], | |
], | |
cache_examples=False, | |
) | |
# Launch the Gradio app | |
if __name__ == "_main_": | |
demo.launch() |