asthaa30 commited on
Commit
c9125fb
·
verified ·
1 Parent(s): 4e08515

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -5
app.py CHANGED
@@ -1,22 +1,74 @@
1
  import gradio as gr
2
  import json
3
  import os
 
4
  from groq import Groq
5
  from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
6
 
7
  # Use the fine-tuned maritime legal model
8
  MODEL = "nomiChroma3.1"
9
- ##client = Groq(api_key=os.environ["GROQ_API_KEY"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
- from huggingface_hub import InferenceClient
13
 
14
  """
15
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
  """
17
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
18
-
19
 
 
20
  def respond(
21
  message,
22
  history: list[tuple[str, str]],
@@ -72,4 +124,5 @@ demo = gr.ChatInterface(
72
 
73
 
74
  if __name__ == "__main__":
75
- demo.launch()
 
 
1
  import gradio as gr
2
  import json
3
  import os
4
+ from huggingface_hub import InferenceClient
5
  from groq import Groq
6
  from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
7
 
8
  # Use the fine-tuned maritime legal model
9
  MODEL = "nomiChroma3.1"
10
+ client = Groq(api_key=os.environ["GROQ_API_KEY"])
11
+
12
+
13
+ def respond(
14
+ message,
15
+ history: list[tuple[str, str]],
16
+ system_message: str,
17
+ max_tokens: int,
18
+ temperature: float,
19
+ top_p: float,
20
+ ):
21
+ messages = [{"role": "system", "content": system_message}]
22
+
23
+ for user_message, assistant_message in history:
24
+ if user_message:
25
+ messages.append({"role": "user", "content": user_message})
26
+ if assistant_message:
27
+ messages.append({"role": "assistant", "content": assistant_message})
28
+
29
+ messages.append({"role": "user", "content": message})
30
+
31
+ response = ""
32
+ for message in client.chat_completion(
33
+ ChatCompletionToolParam(
34
+ messages=messages,
35
+ max_tokens=max_tokens,
36
+ temperature=temperature,
37
+ top_p=top_p,
38
+ stream=True
39
+ )
40
+ ):
41
+ token = message.choices[0].delta.get("content", "")
42
+ response += token
43
+ yield response
44
+
45
+ demo = gr.ChatInterface(
46
+ respond,
47
+ additional_inputs=[
48
+ gr.Textbox(
49
+ value="You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information based on Indian maritime legal principles and regulations.",
50
+ label="System message"
51
+ ),
52
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
53
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
54
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
55
+ ],
56
+ title="Maritime Legal Compliance",
57
+ description="This chatbot uses the fine-tuned Llama 3.1 which has the capabilities of responding and helping in legal advices regarding maritime.",
58
+ )
59
+
60
+ if __name__ == "__main__":
61
+ demo.launch()
62
+
63
 
64
 
 
65
 
66
  """
67
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
68
  """
69
+ ##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
70
 
71
+ """
72
  def respond(
73
  message,
74
  history: list[tuple[str, str]],
 
124
 
125
 
126
  if __name__ == "__main__":
127
+ demo.launch()
128
+ """