Spaces:
Runtime error
Runtime error
File size: 5,753 Bytes
867ef01 e2d20d4 1cec5b6 867ef01 f38c19f 867ef01 f38c19f 867ef01 f38c19f 92b7d80 f38c19f 867ef01 f38c19f 92b7d80 1cec5b6 92b7d80 1cec5b6 92b7d80 867ef01 fca36f2 f38c19f 867ef01 f38c19f 867ef01 f38c19f 867ef01 f38c19f 867ef01 f38c19f 867ef01 f38c19f 867ef01 f38c19f 867ef01 392dfeb 867ef01 fca36f2 f38c19f 867ef01 392dfeb 867ef01 e2d20d4 f38c19f 92b7d80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from fastapi import FastAPI
import time
import torch
import os
access_token = os.evn["read_access"]
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cpu" # the device to load the model onto
time1 = time.time()
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-0.5B-Instruct",
torch_dtype="auto",
device_map="auto"
)
time2 = time.time()
print(time2-time1)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
time3 = time.time()
print(time3-time1)
model1 = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-1.5B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer1 = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
time4 = time.time()
print(time4-time3)
app = FastAPI()
time5 = time.time()
print(time5-time4)
tokenizer2 = AutoTokenizer.from_pretrained("google/gemma-2-2b-it", token=access_token)
model2 = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b-it",
device_map="auto",
torch_dtype=torch.bfloat16,
token=access_token
)
@app.get("/")
async def read_root():
return {"Hello": "World!"}
start_time = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
time1 = time.time()
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
time2 = time.time()
print(time2-time1)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
time3 = time.time()
print(time3-time2)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=64
)
time4 = time.time()
print(time4-time3)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
time5 = time.time()
print(time5-time4)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
time6 = time.time()
print(time6-time5)
end_time = time.time()
time_taken = end_time - start_time
print(time_taken)
@app.get("/test")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": "World!"}
@app.get("/text")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer1([text], return_tensors="pt").to(device)
generated_ids = model1.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": "World!"}
#return {response: time}
@app.get("/tet")
async def read_droot():
starttime = time.time()
messages = [
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
{"role": "user", "content": "I'm Alok. Who are you?"},
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
{"role": "user", "content": "How are you?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer2([text], return_tensors="pt").to(device)
generated_ids = model2.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)[0]
respons = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
end_time = time.time()
time_taken = end_time - starttime
print(time_taken)
return {"Hello": respons}
#return {response: time} |