File size: 5,753 Bytes
867ef01
 
e2d20d4
1cec5b6
 
 
867ef01
 
 
f38c19f
867ef01
 
 
 
 
f38c19f
 
867ef01
f38c19f
 
 
 
 
 
 
92b7d80
f38c19f
 
867ef01
f38c19f
 
92b7d80
 
1cec5b6
92b7d80
 
 
 
1cec5b6
92b7d80
 
 
867ef01
 
 
 
 
fca36f2
 
 
f38c19f
867ef01
f38c19f
867ef01
 
 
 
 
f38c19f
 
867ef01
f38c19f
 
867ef01
 
 
 
f38c19f
 
867ef01
 
 
f38c19f
 
867ef01
 
f38c19f
 
 
867ef01
 
 
 
 
 
 
392dfeb
867ef01
fca36f2
 
 
f38c19f
867ef01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392dfeb
867ef01
e2d20d4
 
f38c19f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b7d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from fastapi import FastAPI
import time
import torch
import os

access_token = os.evn["read_access"]

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cpu" # the device to load the model onto
time1 = time.time()
model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2-0.5B-Instruct",
    torch_dtype="auto",
    device_map="auto"
)
time2 = time.time()
print(time2-time1)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
time3 = time.time()
print(time3-time1)
model1 = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2-1.5B-Instruct",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer1 = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
time4 = time.time()
print(time4-time3)
app = FastAPI()
time5 = time.time()
print(time5-time4)


tokenizer2 = AutoTokenizer.from_pretrained("google/gemma-2-2b-it", token=access_token)
model2 = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2-2b-it",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    token=access_token
)


@app.get("/")
async def read_root():
    return {"Hello": "World!"}
start_time = time.time()
messages = [
        {"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
        {"role": "user", "content": "I'm Alok. Who are you?"},
        {"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
        {"role": "user", "content": "How are you?"}
]
time1 = time.time()
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
time2 = time.time()
print(time2-time1)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
time3 = time.time()
print(time3-time2)    
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=64
)
time4 = time.time()
print(time4-time3)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
time5 = time.time()
print(time5-time4)    
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
time6 = time.time()
print(time6-time5)

end_time = time.time()
time_taken = end_time - start_time 
print(time_taken)


@app.get("/test")
async def read_droot():
    starttime = time.time()
    messages = [
        {"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
        {"role": "user", "content": "I'm Alok. Who are you?"},
        {"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
        {"role": "user", "content": "How are you?"}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
        
    generated_ids = model.generate(
        model_inputs.input_ids,
        max_new_tokens=64
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
        
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(response)
    end_time = time.time()
    time_taken = end_time - starttime 
    print(time_taken)
    return {"Hello": "World!"}

@app.get("/text")
async def read_droot():
    starttime = time.time()
    messages = [
        {"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
        {"role": "user", "content": "I'm Alok. Who are you?"},
        {"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
        {"role": "user", "content": "How are you?"}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer1([text], return_tensors="pt").to(device)
        
    generated_ids = model1.generate(
        model_inputs.input_ids,
        max_new_tokens=64
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
        
    response = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(response)
    end_time = time.time()
    time_taken = end_time - starttime 
    print(time_taken)
    return {"Hello": "World!"}
    #return {response: time}


@app.get("/tet")
async def read_droot():
    starttime = time.time()
    messages = [
        {"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
        {"role": "user", "content": "I'm Alok. Who are you?"},
        {"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
        {"role": "user", "content": "How are you?"}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer2([text], return_tensors="pt").to(device)
        
    generated_ids = model2.generate(
        model_inputs.input_ids,
        max_new_tokens=64
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
        
    response = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)[0]
    respons = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(response)
    end_time = time.time()
    time_taken = end_time - starttime 
    print(time_taken)
    return {"Hello": respons}
    #return {response: time}