athulnambiar's picture
Upload 3 files
2ada91a verified
import streamlit as st
import cv2
import numpy as np
from ultralytics import YOLO
import pytesseract
from PIL import Image
import os
# Set page title and icon
st.set_page_config(page_title="Motorcycle Helmet Detection", layout="wide")
# Set Tesseract path
pytesseract.pytesseract.tesseract_cmd = '/opt/homebrew/bin/tesseract'
# Load models
@st.cache_resource
def load_models():
# Load YOLO models
detection_model = YOLO("yolov8n.pt")
# Load face detection model
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
return detection_model, face_cascade
# Load the models
try:
detection_model, face_cascade = load_models()
st.sidebar.success("βœ… Models loaded successfully")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.stop()
def extract_license_plate(image, roi=None):
"""Extract license plate from image or region of interest"""
if roi is not None:
# If a region is specified, use it
target = roi
else:
# Otherwise use the whole image
target = image
plate_text = None
try:
# Convert to grayscale
gray = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
edged = cv2.Canny(gray, 30, 200)
# Find contours
contours, _ = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
for contour in contours:
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
# License plates are typically rectangular (4 points)
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
# Filter by aspect ratio - license plates are typically wider than tall
aspect_ratio = float(w) / h
if 1.5 < aspect_ratio < 5.0:
plate_roi = gray[y:y+h, x:x+w]
if plate_roi.size > 0:
# Resize for better OCR
plate_roi = cv2.resize(plate_roi, None, fx=2, fy=2)
# Apply threshold to improve text extraction
_, plate_roi = cv2.threshold(plate_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Extract text
plate_text = pytesseract.image_to_string(plate_roi,
config='--psm 7 --oem 3 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
plate_text = ''.join(e for e in plate_text if e.isalnum())
if len(plate_text) > 3: # Basic validation
return plate_text
except Exception as e:
print(f"Error extracting license plate: {e}")
return plate_text
def detect_helmet_with_circle_detection(image, head_region):
"""Detect helmet using circle detection"""
try:
# Extract head region
x, y, w, h = head_region
head = image[y:y+h, x:x+w]
# Convert to grayscale
gray = cv2.cvtColor(head, cv2.COLOR_BGR2GRAY)
# Apply GaussianBlur to reduce noise
gray = cv2.GaussianBlur(gray, (5, 5), 0)
# Detect circles
circles = cv2.HoughCircles(
gray, cv2.HOUGH_GRADIENT, dp=1, minDist=20,
param1=50, param2=30, minRadius=int(w*0.2), maxRadius=int(w*0.6)
)
# If circles detected, likely a helmet
return circles is not None and len(circles[0]) > 0
except:
return False
def detect_helmet_with_color(image, head_region):
"""Detect helmet using color analysis"""
try:
# Extract head region
x, y, w, h = head_region
head = image[y:y+h, x:x+w]
# Convert to HSV
hsv = cv2.cvtColor(head, cv2.COLOR_BGR2HSV)
# Define color ranges for common helmet colors (black, white, red, blue)
# Black
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 50])
black_mask = cv2.inRange(hsv, lower_black, upper_black)
# White
lower_white = np.array([0, 0, 200])
upper_white = np.array([180, 30, 255])
white_mask = cv2.inRange(hsv, lower_white, upper_white)
# Red (two ranges)
lower_red1 = np.array([0, 100, 100])
upper_red1 = np.array([10, 255, 255])
red_mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
lower_red2 = np.array([160, 100, 100])
upper_red2 = np.array([180, 255, 255])
red_mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
# Blue
lower_blue = np.array([100, 100, 100])
upper_blue = np.array([140, 255, 255])
blue_mask = cv2.inRange(hsv, lower_blue, upper_blue)
# Combine masks
combined_mask = black_mask + white_mask + red_mask1 + red_mask2 + blue_mask
# Calculate percentage of helmet colors
helmet_color_percentage = np.sum(combined_mask > 0) / (w * h)
# If more than 30% of the head region has helmet-like colors, likely a helmet
return helmet_color_percentage > 0.3
except:
return False
def process_image(image):
if isinstance(image, Image.Image):
# Convert PIL image to OpenCV format
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Make a copy for annotation
annotated_img = image.copy()
# Run YOLO detection for motorcycle and person
results = detection_model(image)[0]
# Initialize variables
helmet_detected = False
person_detected = False
motorcycle_detected = False
plate_text = None
# Variables to store bounding boxes
person_boxes = []
motorcycle_boxes = []
# Check detections
for box in results.boxes:
cls = int(box.cls[0])
conf = float(box.conf[0])
if conf > 0.3: # Confidence threshold
x1, y1, x2, y2 = map(int, box.xyxy[0])
# Standard YOLOv8 classes
if cls == 0: # Person
person_detected = True
person_boxes.append((x1, y1, x2, y2))
# Get head region (top 30% of person bounding box)
head_x = x1
head_y = y1
head_w = x2 - x1
head_h = int((y2 - y1) * 0.3)
head_region = (head_x, head_y, head_w, head_h)
# Draw head region for debugging
cv2.rectangle(annotated_img, (head_x, head_y), (head_x + head_w, head_y + head_h), (0, 255, 255), 2)
# Extract head image
head_img = image[head_y:head_y+head_h, head_x:head_x+head_w]
# Use multiple methods to detect helmet
if head_img.size > 0:
# Method 1: Check for faces - visible face might indicate no helmet
gray = cv2.cvtColor(head_img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) > 0:
# Face detected, likely no helmet
helmet_detected = False
cv2.putText(annotated_img, "Face Detected", (head_x, head_y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
# No face detected, check other methods
# Method 2: Circle detection
helmet_detected = detect_helmet_with_circle_detection(image, head_region)
# Method 3: Color analysis
if not helmet_detected:
helmet_detected = detect_helmet_with_color(image, head_region)
elif cls == 3: # Motorcycle
motorcycle_detected = True
motorcycle_boxes.append((x1, y1, x2, y2))
# Extract license plate from motorcycle region
roi = image[y1:y2, x1:x2]
if roi.size > 0:
moto_plate = extract_license_plate(image, roi)
if moto_plate:
plate_text = moto_plate
# If a person on a motorcycle is detected, but no license plate found yet, try on full image
if person_detected and motorcycle_detected and not plate_text:
plate_text = extract_license_plate(image)
# Add manual override option via sidebar
st.sidebar.markdown("### Detection Override")
if st.sidebar.checkbox("Override automatic detection"):
helmet_detected = st.sidebar.radio("Helmet Status:", [True, False], index=0 if helmet_detected else 1)
return helmet_detected, plate_text, cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
# Streamlit UI
st.title("🏍️ Motorcycle Helmet Detection System")
st.write("Upload an image to detect helmet usage and license plate")
uploaded_file = st.file_uploader("Choose an image", type=['jpg', 'jpeg', 'png'])
if uploaded_file is not None:
image = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Processing image...'):
helmet_detected, plate_text, processed_image = process_image(image)
with col2:
st.image(processed_image, caption="Processed Image", use_column_width=True)
# Display results with custom styling
if helmet_detected:
st.markdown("""
<div style='padding: 20px; background-color: #d4edda; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #155724; margin: 0;'>βœ… Helmet Detected!</h3>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style='padding: 20px; background-color: #f8d7da; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #721c24; margin: 0;'>❌ No Helmet Detected - Violation!</h3>
</div>
""", unsafe_allow_html=True)
# Always show license plate if detected, but emphasize when violation occurs
if plate_text:
st.markdown(f"""
<div style='padding: 20px; background-color: #f8d7da; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #721c24; margin: 0;'>License Plate Number:</h3>
<p style='font-size: 24px; margin: 10px 0 0 0;'>{plate_text}</p>
</div>
""", unsafe_allow_html=True)
# Only show license plate in neutral box if compliant
if helmet_detected and plate_text:
st.markdown(f"""
<div style='padding: 20px; background-color: #e2e3e5; border-radius: 5px; margin: 10px 0;'>
<h3 style='color: #383d41; margin: 0;'>License Plate Number:</h3>
<p style='font-size: 24px; margin: 10px 0 0 0;'>{plate_text}</p>
</div>
""", unsafe_allow_html=True)