File size: 1,564 Bytes
492a9fd
 
 
 
73cd058
fea7704
db520f8
73cd058
 
 
 
 
 
 
 
 
492a9fd
db520f8
 
 
492a9fd
 
 
 
db520f8
492a9fd
 
 
db520f8
492a9fd
db520f8
 
 
 
 
 
492a9fd
 
 
 
fea7704
 
 
492a9fd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
import os
import requests
import torch

# Ensure the model file is in the correct location
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
if not os.path.exists(model_path):
    # Download the model file if it doesn't exist
    model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
    response = requests.get(model_url)
    with open(model_path, "wb") as f:
        f.write(response.content)

# Load the document segmentation model on CPU
device = torch.device('cpu')
docseg_model = YOLO(model_path).to(device)

def process_image(image):
    # Convert image to the format YOLO model expects
    image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    results = docseg_model(image)

    # Extract annotated image from results
    annotated_img = results[0].plot()
    annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)

    # Prepare detected areas and labels as text output
    detected_areas_labels = "\n".join(
        [f"{box.label}: {box.conf:.2f}" for box in results[0].boxes]
    )

    return annotated_img, detected_areas_labels

# Define the Gradio interface
interface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(type="pil", label="Annotated Image"),
             gr.Textbox(label="Detected Areas and Labels")]
)

if __name__ == "__main__":
    interface.launch()