Spaces:
Running
Running
File size: 3,521 Bytes
a33f382 607ec5d a33f382 f326c04 963d428 a33f382 f326c04 a33f382 3b4985d 6bd3919 3b4985d 5f77b3b 6bd3919 a33f382 6bd3919 a33f382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import h5py
import gradio as gr
import scipy.io as io
import matplotlib.pyplot as plt
import PIL.Image as Image
import numpy as np
from torchvision import transforms
import scipy
import json
from matplotlib import cm as CM
import torch.nn as nn
import torch
from torchvision import models
class CSRNet(nn.Module):
def __init__(self, load_weights=False):
super(CSRNet, self).__init__()
self.seen = 0
self.frontend_feat = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512]
self.backend_feat = [512, 512, 512, 256, 128, 64]
self.frontend = make_layers(self.frontend_feat)
self.backend = make_layers(self.backend_feat, in_channels=512, dilation=True)
self.output_layer = nn.Conv2d(64, 1, kernel_size=1)
if not load_weights:
mod = models.vgg16(pretrained=True)
self._initialize_weights()
mod_dict = mod.state_dict()
frontend_dict = self.frontend.state_dict()
for k, v in mod_dict.items():
if k in frontend_dict:
frontend_dict[k].data = v.data
def forward(self,x):
x = self.frontend(x)
x = self.backend(x)
x = self.output_layer(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, in_channels = 3,batch_norm=False,dilation = False):
if dilation:
d_rate = 2
else:
d_rate = 1
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=d_rate,dilation = d_rate)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
# Load the CSRNet model
csrmodel = CSRNet(load_weights=True).cpu()
checkpoint = torch.load("model.pt", map_location=torch.device('cpu'))
csrmodel.load_state_dict(checkpoint)
csrmodel.eval()
# Set the transformation for image preprocessing
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Define the prediction function
def predict_count(input_image):
image = transform(input_image).unsqueeze(0).cpu()
output = csrmodel(image)
predicted_count = int(output.detach().cpu().sum().numpy())
density_map = output.detach().cpu().numpy().reshape(output.shape[2], output.shape[3])
density_map_color = plt.cm.jet(density_map / np.max(density_map))
return predicted_count, density_map_color
from gradio.components import Image
from gradio.components import Label, Image
input_interface = gr.inputs.Image(label="Input Image")
output_interface = [
Label(label="Predicted Count"),
Image(label="Density Map", type="numpy")
]
# Create the Gradio app with both interfaces
grapp = gr.Interface(fn=predict_count, inputs=input_interface, outputs=output_interface)
# Launch the app
grapp.launch() |