|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
model_id = "deepseek-ai/deepseek-coder-1.3b-base" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) |
|
|
|
def generate_code(prompt): |
|
if not prompt.strip(): |
|
return "⚠ Please enter a valid prompt." |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
inputs = {k: v.to(model.device) for k, v in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7) |
|
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
demo = gr.Interface(fn=generate_code, |
|
inputs=gr.Textbox(lines=5, label="Enter Prompt"), |
|
outputs="text", |
|
title="Code Generator using DeepSeek") |
|
|
|
demo.launch() |
|
|