File size: 6,702 Bytes
0321f34
da9c0a0
5da6a2b
6fc6046
0321f34
e0db39e
 
0946447
da9c0a0
e0db39e
5da6a2b
6d2d9db
 
38ba037
0321f34
e0db39e
 
 
 
 
6d2d9db
 
 
0321f34
e0db39e
 
 
 
 
 
38ba037
0946447
 
 
5da6a2b
0946447
 
 
 
 
 
 
e0db39e
0946447
 
 
 
e0db39e
 
 
 
 
6d2d9db
e0db39e
 
6d2d9db
e0db39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2d9db
e0db39e
 
 
 
 
 
 
 
 
 
 
 
6d2d9db
e0db39e
 
 
 
 
 
 
 
 
 
 
 
6d2d9db
 
a365da6
6d2d9db
5da6a2b
 
e0db39e
 
 
38ba037
e0db39e
38ba037
 
e0db39e
 
0321f34
38ba037
 
 
da9c0a0
6fc6046
5da6a2b
6d2d9db
 
 
 
 
5da6a2b
 
da9c0a0
0321f34
6fc6046
da9c0a0
e0db39e
38ba037
6fc6046
6d2d9db
0321f34
e0db39e
6fc6046
38ba037
0321f34
da9c0a0
 
e0db39e
 
0321f34
38ba037
0321f34
 
 
38ba037
0321f34
38ba037
6fc6046
5da6a2b
38ba037
 
e0db39e
5da6a2b
da9c0a0
e0db39e
da9c0a0
0321f34
5da6a2b
6fc6046
0946447
5da6a2b
0946447
 
5da6a2b
38ba037
e0db39e
38ba037
e0db39e
 
 
 
 
 
38ba037
5da6a2b
0321f34
e0db39e
0321f34
38ba037
6fc6046
 
da9c0a0
0321f34
da9c0a0
e0db39e
da9c0a0
 
38ba037
0321f34
 
 
e0db39e
 
0321f34
 
 
0946447
38ba037
da9c0a0
6fc6046
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import json
import gradio as gr
import pandas as pd
import os

from scripts.genbit import *
from scripts.gender_profession_bias import *
from scripts.gender_distribution import *

methodologies = json.load(open("config/methodologies.json", "r"))

MAX_THRESHOLD = 5000
DATASET_CACHE = {}


def evaluate(dataset, sampling_method, sampling_size, column, methodology):
    try:
        print(
            f"[{dataset.name.split('/')[-1]}::{column}] - {sampling_method} {sampling_size} entries"
        )
        data = DATASET_CACHE.setdefault(dataset.name, pd.read_csv(dataset.name))[
            [column]
        ]

        if sampling_method == "First":
            data = data.head(sampling_size)
        elif sampling_method == "Last":
            data = data.tail(sampling_size)
        elif sampling_method == "Random":
            data = data.sample(n=sampling_size, random_state=42)

        result_df, result_plot, result_conclusion = globals()[
            methodologies.get(methodology).get("fx")
        ](data)

        return (
            gr.Markdown.update(
                f"## {methodology} Results\nResult Summary", visible=True
            ),
            gr.Plot.update(result_plot, visible=True),
            gr.Dataframe.update(result_df, visible=True),
        )
    except Exception as e:
        return (
            gr.Markdown.update(visible=False),
            gr.Plot.update(visible=False),
            gr.Dataframe.update(visible=False),
        )


def display_dataset_config(dataset):
    try:
        data = DATASET_CACHE.setdefault(dataset.name, pd.read_csv(dataset.name))

        columns = data.select_dtypes(include=["object"]).columns.tolist()
        corpus = data[columns[0]].tolist()[0:5]

        return (
            gr.Radio.update(
                label="Scope",
                info="Determines the scope of the dataset to be analyzed",
                choices=["First", "Last", "Random"],
                value="First",
                visible=True,
                interactive=True,
            ),
            gr.Slider.update(
                label=f"Number of Entries",
                info=f"Determines the number of entries to be analyzed. Due to computational constraints, the maximum number of entries that can be analyzed is {MAX_THRESHOLD}.",
                minimum=1,
                maximum=min(data.shape[0], MAX_THRESHOLD),
                value=min(data.shape[0], MAX_THRESHOLD),
                visible=True,
                interactive=True,
            ),
            gr.Radio.update(
                label="Column",
                info="Determines the column to be analyzed. These are the columns with text data.",
                choices=columns,
                value=columns[0],
                visible=True,
                interactive=True,
            ),
            gr.DataFrame.update(
                value=pd.DataFrame({f"{columns[0]}": corpus}), visible=True
            ),
        )
    except:
        return (
            gr.Radio.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Radio.update(visible=False),
            gr.DataFrame.update(visible=False),
        )


def update_column_metadata(dataset, column):
    data = DATASET_CACHE.setdefault(dataset.name, pd.read_csv(dataset.name))
    corpus = data[column].tolist()[0:5]

    return gr.Dataframe.update(value=pd.DataFrame({f"{column}": corpus}), visible=True)


def get_methodology_metadata(methodology):
    title = "## " + methodology
    description = methodologies.get(methodology).get("description")

    metadata = f"{title}\n\n{description}"

    return (
        gr.Markdown.update(metadata, visible=True),
        gr.Button.update(interactive=True, visible=True),
    )


BiasAware = gr.Blocks(title="BiasAware: Dataset Bias Detection")

with BiasAware:
    gr.Markdown(
        """
        # BiasAware: Dataset Bias Detection
        
        BiasAware is a specialized tool for detecting and quantifying biases within datasets used for Natural Language Processing (NLP) tasks. NLP training datasets frequently mirror the inherent biases of their source materials, resulting in AI models that unintentionally perpetuate stereotypes, exhibit underrepresentation, and showcase skewed perspectives.
        """
    )

    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("## Dataset")

            dataset_file = gr.File(label="Dataset", file_types=["csv"])
            dataset_examples = gr.Examples(
                [
                    os.path.join(os.path.dirname(__file__), "data/imdb_100.csv"),
                    os.path.join(os.path.dirname(__file__), "data/z_employee.csv"),
                    os.path.join(os.path.dirname(__file__), "data/z_sentences.csv"),
                ],
                inputs=dataset_file,
                label="Example Datasets",
            )

            dataset_sampling_method = gr.Radio(visible=False)
            dataset_sampling_size = gr.Slider(visible=False)
            dataset_column = gr.Radio(visible=False)

            dataset_corpus = gr.Dataframe(
                row_count=(5, "fixed"), col_count=(1, "fixed"), visible=False
            )

        with gr.Column(scale=2):
            gr.Markdown("## Methodology")

            methodology = gr.Radio(
                label="Methodology",
                info="Determines the methodology to be used for bias detection",
                choices=methodologies.keys(),
            )

            evalButton = gr.Button(value="Run Evaluation", interactive=False)

            methodology_metadata = gr.Markdown(visible=False)

        with gr.Column(scale=4):
            result = gr.Markdown("## Result")

            result_plot = gr.Plot(show_label=False, container=False, visible=False)
            result_df = gr.DataFrame(visible=False)

    dataset_file.change(
        fn=display_dataset_config,
        inputs=[dataset_file],
        outputs=[
            dataset_sampling_method,
            dataset_sampling_size,
            dataset_column,
            dataset_corpus,
        ],
    )

    dataset_column.change(
        fn=update_column_metadata,
        inputs=[dataset_file, dataset_column],
        outputs=[dataset_corpus],
    )

    methodology.change(
        fn=get_methodology_metadata,
        inputs=[methodology],
        outputs=[methodology_metadata, evalButton],
    )

    evalButton.click(
        fn=evaluate,
        inputs=[
            dataset_file,
            dataset_sampling_method,
            dataset_sampling_size,
            dataset_column,
            methodology,
        ],
        outputs=[result, result_plot, result_df],
    )

BiasAware.launch()